These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34683777)

  • 1. Investigation of Tensile Creep Behavior for High-Density Polyethylene (HDPE) via Experiments and Mathematical Model.
    Mao Q; Su B; Ma R; Li Z
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexural Creep Behavior of High-Density Polyethylene Lumber and Wood Plastic Composite Lumber Made from Thermally Modified Wood.
    Alrubaie MAA; Lopez-Anido RA; Gardner DJ
    Polymers (Basel); 2020 Jan; 12(2):. PubMed ID: 31991599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lifetime Predictions for High-Density Polyethylene under Creep: Experiments and Modeling.
    Drozdov AD; Høj Jermiin R; de Claville Christiansen J
    Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal, creep-recovery and viscoelastic behavior of high density polyethylene/hydroxyapatite nano particles for bone substitutes: effects of gamma radiation.
    Alothman OY; Fouad H; Al-Zahrani SM; Eshra A; Al Rez MF; Ansari SG
    Biomed Eng Online; 2014 Aug; 13():125. PubMed ID: 25168723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compression Creep and Thermal Ratcheting Behavior of High Density Polyethylene (HDPE).
    Kanthabhabha Jeya RP; Bouzid AH
    Polymers (Basel); 2018 Feb; 10(2):. PubMed ID: 30966192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creep behavior of bagasse fiber reinforced polymer composites.
    Xu Y; Wu Q; Lei Y; Yao F
    Bioresour Technol; 2010 May; 101(9):3280-6. PubMed ID: 20064712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tensile Behavior of High-Density Polyethylene Including the Effects of Processing Technique, Thickness, Temperature, and Strain Rate.
    Amjadi M; Fatemi A
    Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32824990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Investigation on Mechanical Properties of Geocell Strips at Low Temperature.
    Bai Q; He G; Wang Y; Liu J
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of Creep Behavior of HDPE Pipe Butt Fusion Welded Joints Using a Stepped Isostress Method.
    Bai C; Lin R; Lai HS
    Polymers (Basel); 2024 Jun; 16(13):. PubMed ID: 39000658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical Properties, Short Time Creep, and Fatigue of an Austenitic Steel.
    Brnic J; Turkalj G; Canadija M; Lanc D; Krscanski S; Brcic M; Li Q; Niu J
    Materials (Basel); 2016 Apr; 9(4):. PubMed ID: 28773424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Extractives on Dimensional Stability, Dynamic Mechanical Properties, Creep, and Stress Relaxation of Rice Straw/High-Density Polyethylene Composites.
    Wang H; Lin F; Qiu P; Liu T
    Polymers (Basel); 2018 Oct; 10(10):. PubMed ID: 30961101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elevated Temperature Tensile Creep Behavior of Aluminum Borate Whisker-Reinforced Aluminum Alloy Composites (ABOw/Al-12Si).
    Ji Y; Yuan Y; Zhang W; Xu Y; Liu Y
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33806687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of nanoscopic dynamic mechanical properties and B-C-N triad effect on MWCNT/h-BNNP nanofillers reinforced HDPE hybrid composite using oscillatory nanoindentation: An insight into medical applications.
    Badgayan ND; Sahu SK; Samanta S; Rama Sreekanth PS
    J Mech Behav Biomed Mater; 2018 Apr; 80():180-188. PubMed ID: 29427934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The tensile creep characteristics of dental amalgam. I. Stress dependence.
    Cruickshanks-Boyd DW; Roswati N
    J Biomed Mater Res; 1981 Sep; 15(5):769-80. PubMed ID: 12659141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tensile creep mechanical behavior of periodontal ligament: A hyper-viscoelastic constitutive model.
    Zhou J; Song Y; Shi X; Zhang C
    Comput Methods Programs Biomed; 2021 Aug; 207():106224. PubMed ID: 34146838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Heat-Treated Wood Particles on the Physico-Mechanical Properties and Extended Creep Behavior of Wood/Recycled-HDPE Composites Using the Time-Temperature Superposition Principle.
    Yang TC; Chien YC; Wu TL; Hung KC; Wu JH
    Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additive Effects of Solid Paraffins on Mechanical Properties of High-Density Polyethylene.
    Ito A; Ropandi A; Kono K; Hiejima Y; Nitta KH
    Polymers (Basel); 2023 Mar; 15(5):. PubMed ID: 36904562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Investigation and Modeling of Damage Accumulation of EN-AW 2024 Aluminum Alloy under Creep Condition at Elevated Temperature.
    Tomczyk A; Seweryn A
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33467471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of a Modified Time Hardening Model for the Creep Consolidation Effect of Asphalt Mixtures.
    Ma Y; Wang H; Zhao K; Yan L; Yang D
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Temperature Tensile and Creep Behavior in a CrMoV Steel and Weld Metal.
    Song Y; Chai M; Han Z; Liu P
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.