BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 34683782)

  • 1. Metaheuristic Prediction of the Compressive Strength of Environmentally Friendly Concrete Modified with Eggshell Powder Using the Hybrid ANN-SFL Optimization Algorithm.
    Tosee SVR; Faridmehr I; Bedon C; Sadowski Ł; Aalimahmoody N; Nikoo M; Nowobilski T
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compressive Strength Prediction of Rubber Concrete Based on Artificial Neural Network Model with Hybrid Particle Swarm Optimization Algorithm.
    Huang XY; Wu KY; Wang S; Lu T; Lu YF; Deng WC; Li HM
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advancing Concrete Mix Proportion through Hybrid Intelligence: A Multi-Objective Optimization Approach.
    Chen F; Xu W; Wen Q; Zhang G; Xu L; Fan D; Yu R
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating Compressive Strength of Concrete Using Neural Electromagnetic Field Optimization.
    Akbarzadeh MR; Ghafourian H; Anvari A; Pourhanasa R; Nehdi ML
    Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization design of low-carbon hybrid concrete containing slag and limestone powder.
    Wang XY
    Environ Sci Pollut Res Int; 2023 Jan; 30(4):10613-10623. PubMed ID: 36083370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermo-mechanical properties and sustainability analysis of newly developed eco-friendly structural foamed concrete by reusing palm oil fuel ash and eggshell powder as supplementary cementitious materials.
    Jhatial AA; Goh WI; Mastoi AK; Rahman AF; Kamaruddin S
    Environ Sci Pollut Res Int; 2021 Aug; 28(29):38947-38968. PubMed ID: 33745050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyzing the Compressive Strength of Ceramic Waste-Based Concrete Using Experiment and Artificial Neural Network (ANN) Approach.
    Song H; Ahmad A; Ostrowski KA; Dudek M
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of compressive strength of concrete based on improved artificial bee colony-multilayer perceptron algorithm.
    Li P; Zhang Y; Gu J; Duan S
    Sci Rep; 2024 Mar; 14(1):6414. PubMed ID: 38494524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response surface methodology-based optimisation of cost and compressive strength of rubberised concrete incorporating burnt clay brick powder.
    Sinkhonde D; Onchiri RO; Oyawa WO; Mwero JN
    Heliyon; 2021 Dec; 7(12):e08565. PubMed ID: 34917825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressive Strength Prediction of Rice Husk Ash Concrete Using a Hybrid Artificial Neural Network Model.
    Li C; Mei X; Dias D; Cui Z; Zhou J
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Analytical Method for Mix Design and Performance Prediction of High Calcium Fly Ash Geopolymer Concrete.
    Gunasekara C; Atzarakis P; Lokuge W; Law DW; Setunge S
    Polymers (Basel); 2021 Mar; 13(6):. PubMed ID: 33804194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Jellyfish Search-Optimized Deep Learning for Compressive Strength Prediction in Images of Ready-Mixed Concrete.
    Chou JS; Tjandrakusuma S; Liu CY
    Comput Intell Neurosci; 2022; 2022():9541115. PubMed ID: 35958762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash.
    Safiuddin M; Raman SN; Abdus Salam M; Jumaat MZ
    Materials (Basel); 2016 May; 9(5):. PubMed ID: 28773520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the sustainability and cost-effectiveness of concrete incorporating various fineness of eggshell powder as supplementary cementitious material.
    Jhatial AA; Kumar A; Bheel N; Sohu S; Goh WI
    Environ Sci Pollut Res Int; 2022 Dec; 29(56):84814-84826. PubMed ID: 35790628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical Properties, Crack Width, and Propagation of Waste Ceramic Concrete Subjected to Elevated Temperatures: A Comprehensive Study.
    Najm HM; Nanayakkara O; Ahmad M; Sabri Sabri MM
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A modified shuffled frog leaping algorithm with inertia weight.
    Zhao Z; Wang M; Liu Y; Chen Y; He K; Liu Z
    Sci Rep; 2024 Feb; 14(1):4146. PubMed ID: 38378763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Satin bowerbird optimizer-neural network for approximating the capacity of CFST columns under compression.
    Liu Y; Liang Y
    Sci Rep; 2024 Apr; 14(1):8342. PubMed ID: 38594336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature Influence on Ordinary Concrete Modified with Fly Ashes from Thermally Conversed Municipal Sewage Sludge Strength Parameters.
    Rutkowska G; Ogrodnik P; Fronczyk J; Bilgin A
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33233791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial Intelligence Approaches for Prediction of Compressive Strength of Geopolymer Concrete.
    Dao DV; Ly HB; Trinh SH; Le TT; Pham BT
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30934566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction Model for Mechanical Properties of Lightweight Aggregate Concrete Using Artificial Neural Network.
    Yoon JY; Kim H; Lee YJ; Sim SH
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31443400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.