These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34683799)

  • 41. Temperature Effect on the Compressive Behavior and Constitutive Model of Plain Hardened Concrete.
    El-Zohairy A; Hammontree H; Oh E; Moler P
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32580270
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Investigation on Compression Mechanical Properties of Rigid Polyurethane Foam Treated under Random Vibration Condition: An Experimental and Numerical Simulation Study.
    Qiu D; He Y; Yu Z
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31627268
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High Temperature Deformation Behavior and Microstructure Evolution of Low-Density Steel Fe30Mn11Al1C Micro-Alloyed with Nb and V.
    Wang H; Gao Z; Shi Z; Xu H; Zhang L; Wu G; Wang C; Wang C; Weng Y; Cao W
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772086
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Material characterization and computer model simulation of low density polyurethane foam used in a rodent traumatic brain injury model.
    Zhang L; Gurao M; Yang KH; King AI
    J Neurosci Methods; 2011 May; 198(1):93-8. PubMed ID: 21459114
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Accelerated Aging on the Compression Properties of a Green Polyurethane Foam: Experimental and Numerical Analysis.
    Da Silva EHP; De Barros S; Vieira AFC; Da Costa RRC; Ribeiro ML
    Polymers (Basel); 2023 Apr; 15(7):. PubMed ID: 37050398
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of specimen load-bearing and free surface layers on the compressive mechanical properties of cellular materials.
    Zhu M; Keller TS; Spengler DM
    J Biomech; 1994 Jan; 27(1):57-66. PubMed ID: 8106536
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Study on the Mechanical Properties and Energy Absorbing Capability of Polyurethane Microcellular Elastomers under Different Compressive Strain Rates.
    Zhao Z; Li X; Jiang H; Su X; Zhang X; Zou M
    Polymers (Basel); 2023 Feb; 15(3):. PubMed ID: 36772079
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of Large Deformation and Velocity Impacts on the Mechanical Behavior of Filled Rubber: Microstructure-Based Constitutive Modeling and Mechanical Testing.
    Wei W; Yuan Y; Gao X
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33050587
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stress-Strain Curves and Modified Material Constitutive Model for Ti-6Al-4V over the Wide Ranges of Strain Rate and Temperature.
    Hou X; Liu Z; Wang B; Lv W; Liang X; Hua Y
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29865223
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Experimental and Numerical Investigations of High-Speed Projectile Impacts on 7075-T651 Aluminum Plates.
    Jung JW; Lee SE; Hong JW
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31455008
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of Geometrical Changes of Spherical Advanced Pore Morphology (APM) Foam Elements during Compressive Deformation.
    Borovinšek M; Vesenjak M; Higa Y; Shimojima K; Ren Z
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30986957
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Compressive Properties and Constitutive Model of Semicrystalline Polyethylene.
    Zhang K; Li W; Zheng Y; Yao W; Zhao C
    Polymers (Basel); 2021 Aug; 13(17):. PubMed ID: 34502934
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Application of an Arbitrary Lagrangian-Eulerian Method to Modelling the Machining of Rigid Polyurethane Foam.
    Horak Z; Tichy P; Dvorak K; Vilimek M
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33800540
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Determination of Elastic Modulus, Stress Relaxation Time and Thermal Softening Index in ZWT Constitutive Model for Reinforced Al/PTFE.
    Chen C; Guo Z; Tang E
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36772003
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Constitutive Model and Cutting Simulation of Titanium Alloy Ti6Al4V after Heat Treatment.
    Qian X; Duan X
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31835657
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hot Deformation Behavior and a Two-Stage Constitutive Model of 20Mn5 Solid Steel Ingot during Hot Compression.
    Liu M; Ma QX; Luo JB
    Materials (Basel); 2018 Mar; 11(3):. PubMed ID: 29547570
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thermal⁻Mechanical Coupling Behavior of Directional Polymethylmethacrylate under Tension and Compression.
    Guo H; Lu C; Chen Y; Tao J; Chen L
    Polymers (Basel); 2018 Nov; 10(11):. PubMed ID: 30961204
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Crushing Responses of Expanded Polypropylene Foam.
    Xing Y; Sun D; Zhang M; Shu G
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177205
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Separating the influence of the cortex and foam on the mechanical properties of porcupine quills.
    Yang W; McKittrick J
    Acta Biomater; 2013 Nov; 9(11):9065-74. PubMed ID: 23872514
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Uniaxial Compression Mechanical Properties of Foam Nickel/Iron-Epoxy Interpenetrating Phase Composites.
    Wang X; Zhou Y; Li J; Li H
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34202679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.