These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 34683800)

  • 1. Strength and Acid Resistance of Ceramic-Based Self-Compacting Alkali-Activated Concrete: Optimizing and Predicting Assessment.
    Algaifi HA; Khan MI; Shahidan S; Fares G; Abbas YM; Huseien GF; Salami BA; Alabduljabbar H
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimisation of GBFS, Fly Ash, and Nano-Silica Contents in Alkali-Activated Mortars.
    Algaifi HA; Mustafa Mohamed A; Alsuhaibani E; Shahidan S; Alrshoudi F; Huseien GF; Bakar SA
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Taguchi optimization of geopolymer concrete produced with rice husk ash and ceramic dust.
    Memiş S; Bılal MAM
    Environ Sci Pollut Res Int; 2022 Mar; 29(11):15876-15895. PubMed ID: 34633616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Setting, Strength, and Autogenous Shrinkage of Alkali-Activated Fly Ash and Slag Pastes: Effect of Slag Content.
    Nedeljković M; Li Z; Ye G
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30380615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft computing models to predict the compressive strength of GGBS/FA- geopolymer concrete.
    Ahmed HU; Mohammed AA; Mohammed A
    PLoS One; 2022; 17(5):e0265846. PubMed ID: 35613110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using Experimental Statistical Models for Predicting Strength and Deformability of Self-Compacting Concrete with Ground Blast-Furnace Slag.
    Zhitkovsky V; Dvorkin L; Kochkarev D; Ribakov Y
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and Microstructure of Alkali-Activated Rice Husk Ash-Granulated Blast Furnace Slag Tailing Composite Cemented Paste Backfill.
    Zhao W; Ji C; Sun Q; Gu Q
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Waste Ceramic Powder on the Properties of Alkali-Activated Slag and Fly Ash Pastes Exposed to High Temperature.
    Zhang GY; Bae SC; Lin RS; Wang XY
    Polymers (Basel); 2021 Nov; 13(21):. PubMed ID: 34771353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheological and Durability Properties of Self-Compacting Concrete Produced Using Marble Dust and Blast Furnace Slag.
    Karakurt C; Dumangöz M
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35269026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Properties of Waste Sawdust-Based Lightweight Alkali-Activated Concrete: Experimental Assessment and Numerical Prediction.
    Alabduljabbar H; Huseien GF; Sam ARM; Alyouef R; Algaifi HA; Alaskar A
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33276508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suitability of Blending Rice Husk Ash and Calcined Clay for the Production of Self-Compacting Concrete: A Review.
    Muhammad A; Thienel KC; Sposito R
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strength properties of concrete incorporating coal bottom ash and granulated blast furnace slag.
    Ozkan O; Yüksel I; Muratoğlu O
    Waste Manag; 2007; 27(2):161-7. PubMed ID: 16580833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the Corrosion of Steel Embedded in an Alkali-Activated Hybrid Concrete Exposed to Chlorides.
    Valencia-Saavedra W; Aguirre-Guerrero AM; Mejía de Gutiérrez R
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Waste Ceramic Powder on Properties of Alkali-Activated Blast Furnace Slag Paste and Mortar.
    Zhang GY; Ahn YH; Lin RS; Wang XY
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recycling ground granulated blast furnace slag as cold bonded artificial aggregate partially used in self-compacting concrete.
    Gesoğlu M; Güneyisi E; Mahmood SF; Öz HÖ; Mermerdaş K
    J Hazard Mater; 2012 Oct; 235-236():352-8. PubMed ID: 22951223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Review of Durability and Strength Characteristics of Alkali-Activated Slag Concrete.
    Mohamed OA
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31013765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical characteristics of hardened concrete with different mineral admixtures: a review.
    Ayub T; Khan SU; Memon FA
    ScientificWorldJournal; 2014; 2014():875082. PubMed ID: 24688443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Evaluation of the Mechanical Strengths and the Thermal Conductivity of GGBFS and Silica Fume Based Alkali-Activated Concrete.
    Parcesepe E; De Masi RF; Lima C; Mauro GM; Maddaloni G; Pecce MR
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Soft-Computing Methods to Evaluate the Compressive Strength of Self-Compacting Concrete.
    Amin MN; Al-Hashem MN; Ahmad A; Khan K; Ahmad W; Qadir MG; Imran M; Al-Ahmad QMS
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fresh, Mechanical, and Durability Behavior of Fly Ash-Based Self Compacted Geopolymer Concrete: Effect of Slag Content and Various Curing Conditions.
    Sherwani AFH; Younis KH; Arndt RW
    Polymers (Basel); 2022 Aug; 14(15):. PubMed ID: 35956725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.