BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34683813)

  • 1. Modeling and Analysis of a SiC Microstructure-Based Capacitive Micro-Accelerometer.
    Tian X; Sheng W; Guo Z; Xing W; Tang R
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the Dynamic Characteristics of a SiC-Based Capacitive Micro-Accelerometer in Rarefied Air.
    Tian X; Sheng W
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A MEMS Micro-g Capacitive Accelerometer Based on Through-Silicon-Wafer-Etching Process.
    Rao K; Wei X; Zhang S; Zhang M; Hu C; Liu H; Tu LC
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31181589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Python-Based Open-Source Electro-Mechanical Co-Optimization System for MEMS Inertial Sensors.
    Amendoeira Esteves R; Wang C; Kraft M
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monolithic Multi Degree of Freedom (MDoF) Capacitive MEMS Accelerometers.
    Mohammed Z; Elfadel IAM; Rasras M
    Micromachines (Basel); 2018 Nov; 9(11):. PubMed ID: 30453536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A wafer level vacuum encapsulated capacitive accelerometer fabricated in an unmodified commercial MEMS process.
    Merdassi A; Yang P; Chodavarapu VP
    Sensors (Basel); 2015 Mar; 15(4):7349-59. PubMed ID: 25815451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the Shock Response Performance of Micromachined Silicon Resonant Accelerometers by Electrostatic Active Damping Control.
    Huang L; Jiang K; Wang P; Zhang M; Ding X; Li H
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Low-g MEMS Accelerometer with High Sensitivity, Low Nonlinearity and Large Dynamic Range Based on Mode-Localization of 3-DoF Weakly Coupled Resonators.
    Saleem MM; Saghir S; Bukhari SAR; Hamza A; Shakoor RI; Bazaz SA
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33809735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high aspect ratio surface micromachined accelerometer based on a SiC-CNT composite material.
    Mo J; Shankar S; Pezone R; Zhang G; Vollebregt S
    Microsyst Nanoeng; 2024; 10():42. PubMed ID: 38523654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Fabrication Method for a Capacitive MEMS Accelerometer Based on Glass-Silicon Composite Wafers.
    He Y; Si C; Han G; Zhao Y; Ning J; Yang F
    Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33494437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A High-Performance Digital Interface Circuit for a High-Q Micro-Electromechanical System Accelerometer.
    Li X; Hu J; Liu X
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30572597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Capacitive Sensing System Design of a Microelectromechanical Systems Accelerometer for Gravity Measurement Applications.
    Li Z; Wu WJ; Zheng PP; Liu JQ; Fan J; Tu LC
    Micromachines (Basel); 2016 Sep; 7(9):. PubMed ID: 30404340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gyro-Free Inertial Navigation Systems Based on Linear Opto-Mechanical Accelerometers.
    Sanjuan J; Sinyukov A; Warrayat MF; Guzman F
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A High-Sensitivity MEMS Accelerometer Using a Sc
    Zhang Z; Zhang L; Wu Z; Gao Y; Lou L
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance optimization of high-order Lamb wave sensors based on silicon carbide substrates.
    Chen Z; Fan L; Zhang SY; Zhang H
    Ultrasonics; 2016 Feb; 65():296-303. PubMed ID: 26474949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A MEMS Electrochemical Angular Accelerometer Leveraging Silicon-Based Three-Electrode Structure.
    Chen M; Zhong A; Lu Y; Chen J; Chen D; Wang J
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microelectromechanical system (MEMS) capacitive accelerometer-based microphone with enhanced sensitivity for fully implantable hearing aid: a novel analytical approach.
    Dwivedi A; Khanna G
    Biomed Tech (Berl); 2020 Jul; ():. PubMed ID: 32621727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The High-Efficiency Design Method for Capacitive MEMS Accelerometer.
    Liu W; Zhao T; He Z; Ye J; Gong S; Wang X; Yang Y
    Micromachines (Basel); 2023 Sep; 14(10):. PubMed ID: 37893328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Design, Modeling and Experimental Investigation of a Micro-G Microoptoelectromechanical Accelerometer with an Optical Tunneling Measuring Transducer.
    Barbin E; Nesterenko T; Koleda A; Shesterikov E; Kulinich I; Kokolov A; Perin A
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the Frequency-Dependent Vibration Rectification Error in Area-Variation-Based Capacitive MEMS Accelerometers.
    Zhang S; Li Z; Wang Q; Yang Y; Wang Y; He W; Liu J; Tu L; Liu H
    Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38258184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.