These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 34684672)
21. Identification and Quantification of Adulterants in Coffee ( Flores-Valdez M; Meza-Márquez OG; Osorio-Revilla G; Gallardo-Velázquez T Foods; 2020 Jun; 9(7):. PubMed ID: 32629759 [TBL] [Abstract][Full Text] [Related]
22. Detection of coffee adulteration with soybean and corn by capillary electrophoresis-tandem mass spectrometry. Daniel D; Lopes FS; Santos VBD; do Lago CL Food Chem; 2018 Mar; 243():305-310. PubMed ID: 29146342 [TBL] [Abstract][Full Text] [Related]
23. Near-Infrared Spectroscopy Applied to the Detection of Multiple Adulterants in Roasted and Ground Arabica Coffee. de Carvalho Couto C; Freitas-Silva O; Morais Oliveira EM; Sousa C; Casal S Foods; 2021 Dec; 11(1):. PubMed ID: 35010188 [TBL] [Abstract][Full Text] [Related]
24. A simple voltammetric electronic tongue for the analysis of coffee adulterations. de Morais TCB; Rodrigues DR; de Carvalho Polari Souto UT; Lemos SG Food Chem; 2019 Feb; 273():31-38. PubMed ID: 30292371 [TBL] [Abstract][Full Text] [Related]
25. Fluorescence Spectroscopy Based Detection of Adulteration in Desi Ghee. Saleem M J Fluoresc; 2020 Jan; 30(1):181-191. PubMed ID: 31940104 [TBL] [Abstract][Full Text] [Related]
26. Applications of FT-NIRS combined with PLS multivariate methods for the detection & quantification of saccharin adulteration in commercial fruit juices. Mabood F; Hussain J; Jabeen F; Abbas G; Allaham B; Albroumi M; Alghawi S; Alameri S; Gilani SA; Al-Harrasi A; Haq QMI; Farooq S Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Jun; 35(6):1052-1060. PubMed ID: 29659322 [TBL] [Abstract][Full Text] [Related]
27. Rapid quantitative analysis of adulterated rice with partial least squares regression using hyperspectral imaging system. Guo L; Yu Y; Yu H; Tang Y; Li J; Du Y; Chu Y; Ma S; Ma Y; Zeng X J Sci Food Agric; 2019 Sep; 99(12):5558-5564. PubMed ID: 31150114 [TBL] [Abstract][Full Text] [Related]
28. Ultraviolet-visible spectroscopy combined with machine learning as a rapid detection method to the predict adulteration of honey. Razavi R; Kenari RE Heliyon; 2023 Oct; 9(10):e20973. PubMed ID: 37886742 [TBL] [Abstract][Full Text] [Related]
29. Identification and quantification of goat milk adulteration using mid-infrared spectroscopy and chemometrics. Du C; Zhao X; Chu C; Nan L; Ren X; Yan L; Zhang X; Zhang S; Teng Z Spectrochim Acta A Mol Biomol Spectrosc; 2025 Jan; 324():124969. PubMed ID: 39153347 [TBL] [Abstract][Full Text] [Related]
30. Robust new NIRS coupled with multivariate methods for the detection and quantification of tallow adulteration in clarified butter samples. Mabood F; Abbas G; Jabeen F; Naureen Z; Al-Harrasi A; Hamaed AM; Hussain J; Al-Nabhani M; Al Shukaili MS; Khan A; Manzoor S Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Mar; 35(3):404-411. PubMed ID: 29267139 [TBL] [Abstract][Full Text] [Related]
31. Detection and Quantification of Adulteration in Krill Oil with Raman and Infrared Spectroscopic Methods. Ahmmed F; Gordon KC; Killeen DP; Fraser-Miller SJ Molecules; 2023 Apr; 28(9):. PubMed ID: 37175105 [TBL] [Abstract][Full Text] [Related]
32. [Qualitative-Quantitative Analysis of Rice Bran Oil Adulteration Based on Laser Near Infrared Spectroscopy]. Tu B; Song ZQ; Zheng X; Zeng LL; Yin C; He DP; Qi PS Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1539-45. PubMed ID: 26601363 [TBL] [Abstract][Full Text] [Related]
33. Reflectance Spectroscopy with Multivariate Methods for Non-Destructive Discrimination of Edible Oil Adulteration. Su N; Weng S; Wang L; Xu T Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940249 [TBL] [Abstract][Full Text] [Related]
34. Feasibility of using colorimetric devices for whole and ground coffee roasting degrees prediction. de Carvalho Pires F; da Silva Mutz Y; de Carvalho TCL; Lorenzo ND; Pereira RGFA; da Rocha RA; Nunes CA J Sci Food Agric; 2024 Jul; 104(9):5435-5441. PubMed ID: 38345581 [TBL] [Abstract][Full Text] [Related]
35. Rapid Detection of Volatile Oil in Yan H; Guo C; Shao Y; Ouyang Z Pharmacogn Mag; 2017; 13(51):439-445. PubMed ID: 28839369 [TBL] [Abstract][Full Text] [Related]
36. Global calibration for non-targeted fraud detection in quinoa flour using portable hyperspectral imaging and chemometrics. Wu Q; Mousa MAA; Al-Qurashi AD; Ibrahim OHM; Abo-Elyousr KAM; Rausch K; Abdel Aal AMK; Kamruzzaman M Curr Res Food Sci; 2023; 6():100483. PubMed ID: 37033735 [TBL] [Abstract][Full Text] [Related]
37. Gamma-tocopherol as a marker of Brazilian coffee (Coffea arabica L.) adulteration by corn. Jham GN; Winkler JK; Berhow MA; Vaughn SF J Agric Food Chem; 2007 Jul; 55(15):5995-9. PubMed ID: 17602658 [TBL] [Abstract][Full Text] [Related]
38. Rapid spectroscopic method for quantifying gluten concentration as a potential biomarker to test adulteration of green banana flour. Ndlovu PF; Magwaza LS; Tesfay SZ; Mphahlele RR Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec; 262():120081. PubMed ID: 34175755 [TBL] [Abstract][Full Text] [Related]
39. Detection of starch adulteration in onion powder by FT-NIR and FT-IR spectroscopy. Lohumi S; Lee S; Lee WH; Kim MS; Mo C; Bae H; Cho BK J Agric Food Chem; 2014 Sep; 62(38):9246-51. PubMed ID: 25188555 [TBL] [Abstract][Full Text] [Related]
40. Quantitative NMR Methodology for the Authentication of Roasted Coffee and Prediction of Blends. Burton IW; Martinez Farina CF; Ragupathy S; Arunachalam T; Newmaster S; Berrué F J Agric Food Chem; 2020 Dec; 68(49):14643-14651. PubMed ID: 33252222 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]