BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 34684690)

  • 1. Advances in Skin Wound and Scar Repair by Polymer Scaffolds.
    Zhou S; Wang Q; Huang A; Fan H; Yan S; Zhang Q
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bionic Poly(γ-Glutamic Acid) Electrospun Fibrous Scaffolds for Preventing Hypertrophic Scars.
    Xu T; Yang R; Ma X; Chen W; Liu S; Liu X; Cai X; Xu H; Chi B
    Adv Healthc Mater; 2019 Jul; 8(13):e1900123. PubMed ID: 30972958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention.
    Ferguson MW; O'Kane S
    Philos Trans R Soc Lond B Biol Sci; 2004 May; 359(1445):839-50. PubMed ID: 15293811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring.
    Li Z; Wang H; Yang B; Sun Y; Huo R
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():181-8. PubMed ID: 26354253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wound healing and scar wars.
    Pugliese E; Coentro JQ; Raghunath M; Zeugolis DI
    Adv Drug Deliv Rev; 2018 Apr; 129():1-3. PubMed ID: 29909924
    [No Abstract]   [Full Text] [Related]  

  • 6. In vitro and in vivo Evaluation of Antifibrotic Properties of Verteporfin in a Composition of a Collagen Scaffold.
    Rogovaya OS; Abolin DS; Cherkashina OL; Smyslov AD; Vorotelyak EA; Kalabusheva EP
    Biochemistry (Mosc); 2024 May; 89(5):942-957. PubMed ID: 38880654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of ginsenoside Rg3-loaded electrospun PLGA fibrous membranes as wound cover induces healing and inhibits hypertrophic scar formation of the skin.
    Sun X; Cheng L; Zhu W; Hu C; Jin R; Sun B; Shi Y; Zhang Y; Cui W
    Colloids Surf B Biointerfaces; 2014 Mar; 115():61-70. PubMed ID: 24333554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesenchymal stem cell therapy for attenuation of scar formation during wound healing.
    Jackson WM; Nesti LJ; Tuan RS
    Stem Cell Res Ther; 2012 May; 3(3):20. PubMed ID: 22668751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyaluronan in skin wound healing: therapeutic applications.
    King IC; Sorooshian P
    J Wound Care; 2020 Dec; 29(12):782-787. PubMed ID: 33320743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silk fibroin scaffolds seeded with Wharton's jelly mesenchymal stem cells enhance re-epithelialization and reduce formation of scar tissue after cutaneous wound healing.
    Millán-Rivero JE; Martínez CM; Romecín PA; Aznar-Cervantes SD; Carpes-Ruiz M; Cenis JL; Moraleda JM; Atucha NM; García-Bernal D
    Stem Cell Res Ther; 2019 Apr; 10(1):126. PubMed ID: 31029166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coaxial nanofibrous scaffolds mimicking the extracellular matrix transition in the wound healing process promoting skin regeneration through enhancing immunomodulation.
    Sun L; Li J; Gao W; Shi M; Tang F; Fu X; Chen X
    J Mater Chem B; 2021 Feb; 9(5):1395-1405. PubMed ID: 33462572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The healing and anti-scar effects of astragaloside IV on the wound repair in vitro and in vivo.
    Chen X; Peng LH; Li N; Li QM; Li P; Fung KP; Leung PC; Gao JQ
    J Ethnopharmacol; 2012 Feb; 139(3):721-7. PubMed ID: 22143155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cells, matrix, growth factors, and the surgeon. The biology of scarless fetal wound repair.
    Adzick NS; Lorenz HP
    Ann Surg; 1994 Jul; 220(1):10-8. PubMed ID: 8024353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pulsatile release platform based on photo-induced imine-crosslinking hydrogel promotes scarless wound healing.
    Zhang J; Zheng Y; Lee J; Hua J; Li S; Panchamukhi A; Yue J; Gou X; Xia Z; Zhu L; Wu X
    Nat Commun; 2021 Mar; 12(1):1670. PubMed ID: 33723267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Angiogenesis-Based Diabetic Wound Healing/Skin Reconstruction through Bioactive Antibacterial Adhesive Ultraviolet Shielding Nanodressing with Exosome Release.
    Wang M; Wang C; Chen M; Xi Y; Cheng W; Mao C; Xu T; Zhang X; Lin C; Gao W; Guo Y; Lei B
    ACS Nano; 2019 Sep; 13(9):10279-10293. PubMed ID: 31483606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic angiogenesis promoting effects of extracellular matrix scaffolds and adipose-derived stem cells during wound repair.
    Liu S; Zhang H; Zhang X; Lu W; Huang X; Xie H; Zhou J; Wang W; Zhang Y; Liu Y; Deng Z; Jin Y
    Tissue Eng Part A; 2011 Mar; 17(5-6):725-39. PubMed ID: 20929282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scarring, stem cells, scaffolds and skin repair.
    Markeson D; Pleat JM; Sharpe JR; Harris AL; Seifalian AM; Watt SM
    J Tissue Eng Regen Med; 2015 Jun; 9(6):649-68. PubMed ID: 24668923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulating inflammation using acid-responsive electrospun fibrous scaffolds for skin scarless healing.
    Yuan Z; Zhao J; Chen Y; Yang Z; Cui W; Zheng Q
    Mediators Inflamm; 2014; 2014():858045. PubMed ID: 24795507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regeneration of Dermis: Scarring and Cells Involved.
    Rippa AL; Kalabusheva EP; Vorotelyak EA
    Cells; 2019 Jun; 8(6):. PubMed ID: 31216669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Transplanted Stem Cell Survival in a Polymer Gel Supplemented With Tenascin C Accelerates Healing and Reduces Scarring of Murine Skin Wounds.
    Yates CC; Nuschke A; Rodrigues M; Whaley D; Dechant JJ; Taylor DP; Wells A
    Cell Transplant; 2017 Jan; 26(1):103-113. PubMed ID: 27452449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.