These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34684718)

  • 1. Optimization of Infrared Heating Conditions for Precooked Cowpea Production Using Response Surface Methodology.
    Ogundele OM; Gbashi S; Oyeyinka SA; Kayitesi E; Adebo OA
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning predictive model for evaluating the cooking characteristics of moisture conditioned and infrared heated cowpea.
    Ogundele OM; Akintola AT; Fasogbon BM; Adebo OA
    Sci Rep; 2022 Jun; 12(1):9245. PubMed ID: 35654984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of extrusion, infrared and microwave processing on Maillard reaction products and phenolic compounds in soybean.
    Zilić S; Mogol BA; Akıllıoğlu G; Serpen A; Delić N; Gökmen V
    J Sci Food Agric; 2014 Jan; 94(1):45-51. PubMed ID: 23640730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrared heating under optimized conditions enhanced the pasting and swelling behaviour of cowpea starch.
    Oyeyinka SA; Oyedeji AB; Ogundele OM; Adebo OA; Njobeh PB; Kayitesi E
    Int J Biol Macromol; 2021 Aug; 184():678-688. PubMed ID: 34174303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of micronisation of pre-conditioned cowpeas on cooking time and sensory properties of cooked cowpeas.
    Kayitesi E; Duodu KG; Minnaar A; de Kock HL
    J Sci Food Agric; 2013 Mar; 93(4):838-45. PubMed ID: 23080034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing niger seed (Guizotia abyssinica) oil quality: A comprehensive analysis of infrared-heat induced changes in bioactive profile, physiochemical attributes, and oxidative stability.
    Sundar S; Singh B; Kaur A
    J Food Sci; 2024 Jun; 89(6):3523-3539. PubMed ID: 38685875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of heating on the polyphenolic content and antioxidant activity of grape seed flour.
    Ross CF; Hoye C; Fernandez-Plotka VC
    J Food Sci; 2011 Aug; 76(6):C884-90. PubMed ID: 22417486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of different cooking conditions on phenolic compounds and antioxidant capacity of some selected Brazilian bean (Phaseolus vulgaris L.) cultivars.
    Ranilla LG; Genovese MI; Lajolo FM
    J Agric Food Chem; 2009 Jul; 57(13):5734-42. PubMed ID: 19507856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of microwave-assisted extraction (MAE) of coriander phenolic antioxidants - response surface methodology approach.
    Zeković Z; Vladić J; Vidović S; Adamović D; Pavlić B
    J Sci Food Agric; 2016 Oct; 96(13):4613-22. PubMed ID: 26916516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of soaking process on the microstructure of cowpea seeds in relation to solid losses and water absorption.
    Coffigniez F; Briffaz A; Mestres C; Akissoé L; Bohuon P; El Maâtaoui M
    Food Res Int; 2019 May; 119():268-275. PubMed ID: 30884656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of gamma-irradiation on cotyledon cell separation and pectin solubilisation in hard-to-cook cowpeas.
    Jombo TZ; Minnaar A; Taylor JR
    J Sci Food Agric; 2018 Mar; 98(5):1725-1733. PubMed ID: 28858377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Use of cowpea (Vigna unguiculata) in mixtures with common beans (Phaseolus vulgaris) for the development of new food products].
    López Guerra CM; Bressani R
    Arch Latinoam Nutr; 2008 Mar; 58(1):71-80. PubMed ID: 18589575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of different processing treatments on techno and biofunctional characteristics of dhaincha (
    Sahni P; Sharma S; Singh B
    Food Sci Technol Int; 2021 Apr; 27(3):251-263. PubMed ID: 32819158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of hull-less pumpkin seed roasting conditions using response surface methodology.
    Vujasinović V; Radočaj O; Dimić E
    J Food Sci; 2012 May; 77(5):C532-8. PubMed ID: 23163936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of low-molecular-weight antioxidants to the antioxidant capacity of raw and processed lentil seeds.
    Fernandez-Orozco R; Zieliński H; Piskuła MK
    Nahrung; 2003 Oct; 47(5):291-9. PubMed ID: 14609082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of processing on some properties of cowpea (Vigna unguiculata), seed, protein, starch, flour and akara.
    Enwere NJ; McWatters KH; Phillips RD
    Int J Food Sci Nutr; 1998 Sep; 49(5):365-73. PubMed ID: 10367006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boiling influences the nutritional value of three seed cowpea (Vigna unguiculata) varieties using in vivo and in vitro methods.
    Torres J; Peters M; Montoya CA
    Food Chem; 2019 Nov; 297():124940. PubMed ID: 31253269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-response modeling of reaction-diffusion to explain alpha-galactoside behavior during the soaking-cooking process in cowpea.
    Coffigniez F; Briffaz A; Mestres C; Alter P; Durand N; Bohuon P
    Food Chem; 2018 Mar; 242():279-287. PubMed ID: 29037690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production and characterization of cowpea protein hydrolysate with optimum nitrogen solubility by enzymatic hydrolysis using pepsin.
    Mune Mune MA; Minka SR
    J Sci Food Agric; 2017 Jun; 97(8):2561-2568. PubMed ID: 27714803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of antioxidant compounds of red and white rice and changes in total antioxidant capacity during processing.
    Finocchiaro F; Ferrari B; Gianinetti A; Dall'asta C; Galaverna G; Scazzina F; Pellegrini N
    Mol Nutr Food Res; 2007 Aug; 51(8):1006-19. PubMed ID: 17639995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.