These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 34684877)

  • 41. Toward rapid, "green", predictable microwave-assisted synthesis.
    Roberts BA; Strauss CR
    Acc Chem Res; 2005 Aug; 38(8):653-61. PubMed ID: 16104688
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microwave Induced Green Synthesis: Sustainable Technology for Efficient Development of Bioactive Pyrimidine Scaffolds.
    Sahoo BM; Banik BK; Kumar BVVR; Panda KC; Tiwari A; Tiwari V; Singh S; Kumar M
    Curr Med Chem; 2023; 30(9):1029-1059. PubMed ID: 35733315
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Controlled microwave heating in modern organic synthesis: highlights from the 2004-2008 literature.
    Kappe CO; Dallinger D
    Mol Divers; 2009 May; 13(2):71-193. PubMed ID: 19381851
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microwave-assisted and continuous flow multistep synthesis of 4-(pyrazol-1-yl)carboxanilides.
    Obermayer D; Glasnov TN; Kappe CO
    J Org Chem; 2011 Aug; 76(16):6657-69. PubMed ID: 21721531
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Advances in microwave-assisted synthesis and the impact of novel drug discovery.
    Berrino E; Supuran CT
    Expert Opin Drug Discov; 2018 Sep; 13(9):861-873. PubMed ID: 30010444
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microwave-Assisted Synthesis: Can Transition Metal Complexes Take Advantage of This "Green" Method?
    Gabano E; Ravera M
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807493
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A simplified green chemistry approaches to synthesis of 2-substituted 1,2,3-triazoles and 4-amino-5-cyanopyrazole derivatives conventional heating versus microwave and ultrasound as ecofriendly energy sources.
    Al-Zaydi KM
    Ultrason Sonochem; 2009 Aug; 16(6):805-9. PubMed ID: 19345637
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Easy-to-execute carbonylations: microwave synthesis of acyl sulfonamides using Mo(CO)(6) as a solid carbon monoxide source.
    Wu X; Rönn R; Gossas T; Larhed M
    J Org Chem; 2005 Apr; 70(8):3094-8. PubMed ID: 15822969
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microwave-assisted synthesis of bioactive quinazolines and quinazolinones.
    Besson T; Chosson E
    Comb Chem High Throughput Screen; 2007 Dec; 10(10):903-17. PubMed ID: 18288950
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis of gamma-nitro aliphatic methyl esters via Michael additions promoted by microwave irradiation.
    Escalante J; Díaz-Coutiño FD
    Molecules; 2009 Apr; 14(4):1595-604. PubMed ID: 19384288
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Application of microwave irradiation technology to the field of pharmaceutics].
    Zhang XB; Shi NQ; Yang ZQ; Wang XL
    Yao Xue Xue Bao; 2014 Mar; 49(3):303-9. PubMed ID: 24961099
    [TBL] [Abstract][Full Text] [Related]  

  • 52. One-pot microwave-assisted synthesis of a benzopyrano[2,3-c]pyrazol-3(2H)-one library.
    Borisov AV; Gorobets NY; Yermolayev SA; Zhuravel' IO; Kovalenko SM; Desenko SM
    J Comb Chem; 2007; 9(6):909-11. PubMed ID: 17727267
    [No Abstract]   [Full Text] [Related]  

  • 53. Microwave-Assisted Synthesis of Diversely Substituted Quinoline-Based Dihydropyridopyrimidine and Dihydropyrazolopyridine Hybrids.
    Insuasty D; Abonia R; Insuasty B; Quiroga J; Laali KK; Nogueras M; Cobo J
    ACS Comb Sci; 2017 Aug; 19(8):555-563. PubMed ID: 28723092
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microwave-assisted organic synthesis and transformations using benign reaction media.
    Polshettiwar V; Varma RS
    Acc Chem Res; 2008 May; 41(5):629-39. PubMed ID: 18419142
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microwave-assisted polymer-supported combinatorial synthesis.
    Swamy KM; Yeh WB; Lin MJ; Sun CM
    Curr Med Chem; 2003 Nov; 10(22):2403-23. PubMed ID: 14529482
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis.
    Dahal N; García S; Zhou J; Humphrey SM
    ACS Nano; 2012 Nov; 6(11):9433-46. PubMed ID: 23033897
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microwave Flow Chemistry as a Methodology in Organic Syntheses, Enzymatic Reactions, and Nanoparticle Syntheses.
    Horikoshi S; Serpone N
    Chem Rec; 2019 Jan; 19(1):118-139. PubMed ID: 30277645
    [TBL] [Abstract][Full Text] [Related]  

  • 58. MAOS and medicinal chemistry: some important examples from the last years.
    Nascimento-Júnior NM; Kümmerle AE; Barreiro EJ; Fraga CA
    Molecules; 2011 Nov; 16(11):9274-97. PubMed ID: 22064269
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microwave-accelerated homogeneous catalysis in organic chemistry.
    Larhed M; Moberg C; Hallberg A
    Acc Chem Res; 2002 Sep; 35(9):717-27. PubMed ID: 12234201
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.
    Gawande MB; Shelke SN; Zboril R; Varma RS
    Acc Chem Res; 2014 Apr; 47(4):1338-48. PubMed ID: 24666323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.