BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 34684904)

  • 1. Prospects for More Efficient Multi-Photon Absorption Photosensitizers Exhibiting Both Reactive Oxygen Species Generation and Luminescence.
    Robbins E; Leroy-Lhez S; Villandier N; Samoć M; Matczyszyn K
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly efficient, conjugated-polymer-based nano-photosensitizers for selectively targeted two-photon photodynamic therapy and imaging of cancer cells.
    Shen X; Li S; Li L; Yao SQ; Xu QH
    Chemistry; 2015 Jan; 21(5):2214-21. PubMed ID: 25469739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanorod enhanced conjugated polymer/photosensitizer composite nanoparticles for simultaneous two-photon excitation fluorescence imaging and photodynamic therapy.
    Li S; Shen X; Xu QH; Cao Y
    Nanoscale; 2019 Nov; 11(41):19551-19560. PubMed ID: 31578535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-photon excitation nanoparticles for photodynamic therapy.
    Shen Y; Shuhendler AJ; Ye D; Xu JJ; Chen HY
    Chem Soc Rev; 2016 Dec; 45(24):6725-6741. PubMed ID: 27711672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional Two-Photon AIE Luminogens for Highly Mitochondria-Specific Bioimaging and Efficient Photodynamic Therapy.
    Zhuang W; Yang L; Ma B; Kong Q; Li G; Wang Y; Tang BZ
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):20715-20724. PubMed ID: 31144501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysosome-targetable polythiophene nanoparticles for two-photon excitation photodynamic therapy and deep tissue imaging.
    Zhao S; Niu G; Wu F; Yan L; Zhang H; Zhao J; Zeng L; Lan M
    J Mater Chem B; 2017 May; 5(20):3651-3657. PubMed ID: 32264053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining Ruthenium(II) Complexes with Metal-Organic Frameworks to Realize Effective Two-Photon Absorption for Singlet Oxygen Generation.
    Zhang W; Li B; Ma H; Zhang L; Guan Y; Zhang Y; Zhang X; Jing P; Yue S
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21465-71. PubMed ID: 27483010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Singlet Oxygen Generation in Metal Nanoclusters for Two-Photon Photodynamic Therapy Applications.
    Ho-Wu R; Yau SH; Goodson T
    J Phys Chem B; 2017 Nov; 121(43):10073-10080. PubMed ID: 29016137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Singlet Oxygen Photogeneration by Zinc Porphyrin Dimers upon One- and Two-Photon Excitation.
    Mazur LM; Roland T; Leroy-Lhez S; Sol V; Samoc M; Samuel IDW; Matczyszyn K
    J Phys Chem B; 2019 May; 123(19):4271-4277. PubMed ID: 30835470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise Two-Photon Photodynamic Therapy using an Efficient Photosensitizer with Aggregation-Induced Emission Characteristics.
    Gu B; Wu W; Xu G; Feng G; Yin F; Chong PHJ; Qu J; Yong KT; Liu B
    Adv Mater; 2017 Jul; 29(28):. PubMed ID: 28556297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photodynamic Therapy Directed by Three-Photon Active Rigid Plane Organic Photosensitizer.
    Cao H; Fang B; Liu J; Shen Y; Shen J; Xiang P; Zhou Q; De Souza SC; Li D; Tian Y; Luo L; Zhang Z; Tian X
    Adv Healthc Mater; 2021 Apr; 10(7):e2001489. PubMed ID: 33336561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One- and two-photon singlet oxygen generation with new fluorene-based photosensitizers.
    Andrasik SJ; Belfield KD; Bondar MV; Hernandez FE; Morales AR; Przhonska OV; Yao S
    Chemphyschem; 2007 Feb; 8(3):399-404. PubMed ID: 17226876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulating the Dynamics of Dark Excited States in Organic Materials for Phototheranostics.
    Hu W; Prasad PN; Huang W
    Acc Chem Res; 2021 Feb; 54(3):697-706. PubMed ID: 33301301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-photon absorption of metal-organic DNA-probes.
    Hanczyc P; Norden B; Samoc M
    Dalton Trans; 2012 Mar; 41(11):3123-5. PubMed ID: 22293935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced singlet oxygen generation from a porphyrin-rhodamine B dyad by two-photon excitation through resonance energy transfer.
    Ngen EJ; Xiao L; Rajaputra P; Yan X; You Y
    Photochem Photobiol; 2013; 89(4):841-8. PubMed ID: 23489066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A theoretical study of a series of water-soluble triphenylamine photosensitizers for two-photon photodynamic therapy.
    Wang X; Yin X; Lai XY; Liu YT
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Oct; 203():229-235. PubMed ID: 29870907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study on photophysical properties of three high water solubility polypyridyl complexes for two-photon photodynamic therapy.
    Liu YT; Yin X; Lai XY; Wang X
    Phys Chem Chem Phys; 2018 Jul; 20(26):18074-18081. PubMed ID: 29932200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple mitochondrial targeting AIEgen for image-guided two-photon excited photodynamic therapy.
    Jiang M; Kwok RTK; Li X; Gui C; Lam JWY; Qu J; Tang BZ
    J Mater Chem B; 2018 May; 6(17):2557-2565. PubMed ID: 32254474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phthalocyanine-Cored Fluorophores with Fluorene-Containing Peripheral Two-Photon Antennae as Photosensitizers for Singlet Oxygen Generation.
    Abid S; Hassine SB; Richy N; Camerel F; Jamoussi B; Blanchard-Desce M; Mongin O; Paul F; Paul-Roth CO
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31936003
    [No Abstract]   [Full Text] [Related]  

  • 20. Assessment of water-soluble pi-extended squaraines as one- and two-photon singlet oxygen photosensitizers: design, synthesis, and characterization.
    Beverina L; Crippa M; Landenna M; Ruffo R; Salice P; Silvestri F; Versari S; Villa A; Ciaffoni L; Collini E; Ferrante C; Bradamante S; Mari CM; Bozio R; Pagani GA
    J Am Chem Soc; 2008 Feb; 130(6):1894-902. PubMed ID: 18205353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.