BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34684972)

  • 1. Effect of Copper Doping on Electronic Structure and Optical Absorption of Cd
    Zhao F; Hu S; Xu C; Xiao H; Zhou X; Zu X; Peng S
    Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34684972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Ag doping on the electronic and optical properties of CdSe quantum dots.
    Zhao FA; Xiao HY; Bai XM; Zu XT
    Phys Chem Chem Phys; 2019 Aug; 21(29):16108-16119. PubMed ID: 31290876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. II-VI core/shell quantum dots and doping with transition metal ions as a means of tuning the magnetoelectronic properties of CdS/ZnS core/shell QDs: A DFT study.
    Malik P; Thareja R; Singh J; Kakkar R
    J Mol Graph Model; 2022 Mar; 111():108099. PubMed ID: 34871980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implications of orbital hybridization on the electronic properties of doped quantum dots: the case of Cu:CdSe.
    Wright JT; Forsythe K; Hutchins J; Meulenberg RW
    Nanoscale; 2016 Apr; 8(17):9417-24. PubMed ID: 27093918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of spatially heterogeneous chemical doping on the electronic properties of CdSe quantum dots: insights from
    Deswal P; Samanta K; Ghosh D
    Nanoscale; 2023 Nov; 15(42):17055-17067. PubMed ID: 37846794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical absorbance of doped Si quantum dots calculated by time-dependent density functional theory with partial electronic self-interaction corrections.
    Freitag H; Mavros MG; Micha DA
    J Chem Phys; 2012 Oct; 137(14):144301. PubMed ID: 23061842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrothermal synthesis of water-soluble Mn- and Cu-doped CdSe quantum dots with multi-shell structures and their photoluminescence properties.
    Nishimura H; Enomoto K; Pu YJ; Kim D
    RSC Adv; 2022 Feb; 12(10):6255-6264. PubMed ID: 35424533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Chemistry of Semiconducting Quantum Dots: Theoretical Perspectives.
    Kilina SV; Tamukong PK; Kilin DS
    Acc Chem Res; 2016 Oct; 49(10):2127-2135. PubMed ID: 27669357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum chemistry of quantum dots: effects of ligands and oxidation.
    Inerbaev TM; Masunov AE; Khondaker SI; Dobrinescu A; Plamadă AV; Kawazoe Y
    J Chem Phys; 2009 Jul; 131(4):044106. PubMed ID: 19655836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cu-doped quantum dots: a new class of near-infrared emitting fluorophores for bioanalysis and bioimaging.
    Li C; Wu P
    Luminescence; 2019 Dec; 34(8):782-789. PubMed ID: 31297953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "Quantized" Doping of Individual Colloidal Nanocrystals Using Size-Focused Metal Quantum Clusters.
    Santiago-González B; Monguzzi A; Pinchetti V; Casu A; Prato M; Lorenzi R; Campione M; Chiodini N; Santambrogio C; Meinardi F; Manna L; Brovelli S
    ACS Nano; 2017 Jun; 11(6):6233-6242. PubMed ID: 28485979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic and Magnetic Properties of Encapsulated MoS2 Quantum Dots: The Case of Noble Metal Nanoparticle Dopants.
    Loh GC
    Chemphyschem; 2016 Apr; 17(8):1180-94. PubMed ID: 26817440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Doping MAPbBr
    Baronnier J; Houel J; Dujardin C; Kulzer F; Mahler B
    Nanoscale; 2022 Apr; 14(15):5769-5781. PubMed ID: 35352077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Density Functional Investigation of Cu Doping Impact on the Electronic Structures and Optical Characteristics of TiO
    Kanoun MB; Alshoaibi A; Goumri-Said S
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand Induced Spectral Changes in CdSe Quantum Dots.
    Azpiroz JM; De Angelis F
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19736-45. PubMed ID: 26289823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable White Fluorescent Copper Gallium Sulfide Quantum Dots Enabled by Mn Doping.
    Jo DY; Kim D; Kim JH; Chae H; Seo HJ; Do YR; Yang H
    ACS Appl Mater Interfaces; 2016 May; 8(19):12291-7. PubMed ID: 27120773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defect-induced room temperature ferromagnetism in Cu-doped In
    Liu Y; Xiao P; Du L; Liang X; Zhang M
    Phys Chem Chem Phys; 2020 Oct; 22(40):23121-23127. PubMed ID: 33025995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Cu, Zn Doping on the Structural, Electronic, and Optical Properties of α-Ga
    Zeng H; Wu M; Cheng M; Lin Q
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of far-red- and near-infrared-emitting Cu-doped InP/ZnS (core/shell) quantum dots with controlled doping steps and their surface functionalization for bioconjugation.
    Lim M; Lee W; Bang G; Lee WJ; Park Y; Kwon Y; Jung Y; Kim S; Bang J
    Nanoscale; 2019 May; 11(21):10463-10471. PubMed ID: 31112192
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.