These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 34684979)
1. Stable, Ductile and Strong Ultrafine HT-9 Steels via Large Strain Machining. El-Atwani O; Kim H; Gigax JG; Harvey C; Aytuna B; Efe M; Maloy SA Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34684979 [TBL] [Abstract][Full Text] [Related]
2. Limitations of Thermal Stability Analysis via El-Atwani O; Kim H; Harvey C; Efe M; Maloy SA Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34684981 [TBL] [Abstract][Full Text] [Related]
3. On the mechanical behavior of austenitic stainless steel with nano/ultrafine grains and comparison with micrometer austenitic grains counterpart and their biological functions. Gong N; Hu C; Hu B; An B; Misra RDK J Mech Behav Biomed Mater; 2020 Jan; 101():103433. PubMed ID: 31539734 [TBL] [Abstract][Full Text] [Related]
4. Effect of Annealing Temperature on the Microstructure and Mechanical Properties of High-Pressure Torsion-Produced 316LN Stainless Steel. Dong Y; Zhang Z; Yang Z; Zheng R; Chen X Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009329 [TBL] [Abstract][Full Text] [Related]
5. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels. Ding R; Yao Y; Sun B; Liu G; He J; Li T; Wan X; Dai Z; Ponge D; Raabe D; Zhang C; Godfrey A; Miyamoto G; Furuhara T; Yang Z; van der Zwaag S; Chen H Sci Adv; 2020 Mar; 6(13):eaay1430. PubMed ID: 32258395 [TBL] [Abstract][Full Text] [Related]
6. In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments. El-Atwani O; Hinks JA; Greaves G; Gonderman S; Qiu T; Efe M; Allain JP Sci Rep; 2014 May; 4():4716. PubMed ID: 24796578 [TBL] [Abstract][Full Text] [Related]
7. The significance of phase reversion-induced nanograined/ultrafine-grained structure on the load-controlled deformation response and related mechanism in copper-bearing austenitic stainless steel. Hu CY; Somani MC; Misra RDK; Yang CG J Mech Behav Biomed Mater; 2020 Apr; 104():103666. PubMed ID: 32174424 [TBL] [Abstract][Full Text] [Related]
8. Microstructure and Mechanical Properties of Ultrafine-Grained Copper by Accumulative Roll Bonding and Subsequent Annealing. Liu X; Zhuang L; Zhao Y Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33207840 [TBL] [Abstract][Full Text] [Related]
10. In-situ SEM observation of grain growth in the austenitic region of carbon steel using thermal etching. Heard R; Dragnevski KI; Siviour CR J Microsc; 2020 Sep; 279(3):249-255. PubMed ID: 32259284 [TBL] [Abstract][Full Text] [Related]
11. Strategies to Achieve High Strength and Ductility of Pulsed Electrodeposited Nanocrystalline Co-Cu by Tuning the Deposition Parameters. Pratama K; Motz C Molecules; 2020 Nov; 25(21):. PubMed ID: 33171606 [TBL] [Abstract][Full Text] [Related]
12. Radiation tolerance of La-doped nanocrystalline steel under heavy-ion irradiation at different temperatures. Fang Y; Ge W; Yang T; Du C; Wang C; Liu S; Lu Y; Yan Z; Liu H; Liu F; Yang G; Shen T; Wang Y Nanotechnology; 2018 Dec; 29(49):494001. PubMed ID: 30215617 [TBL] [Abstract][Full Text] [Related]
13. Characterization of Microstructure, Phase Composition, and Mechanical Behavior of Ballistic Steels. Khan W; Tufail M; Chandio AD Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329656 [TBL] [Abstract][Full Text] [Related]
14. Excellent Combination of Tensile ductility and strength due to nanotwinning and a biamodal structure in cryorolled austenitic stainless steel. Kumar GVS; Mangipudi KR; Sastry GVS; Singh LK; Dhanasekaran S; Sivaprasad K Sci Rep; 2020 Jan; 10(1):354. PubMed ID: 31941948 [TBL] [Abstract][Full Text] [Related]
15. High tensile ductility in a nanostructured metal. Wang Y; Chen M; Zhou F; Ma E Nature; 2002 Oct; 419(6910):912-5. PubMed ID: 12410306 [TBL] [Abstract][Full Text] [Related]
16. Chemical heterogeneity enhances hydrogen resistance in high-strength steels. Sun B; Lu W; Gault B; Ding R; Makineni SK; Wan D; Wu CH; Chen H; Ponge D; Raabe D Nat Mater; 2021 Dec; 20(12):1629-1634. PubMed ID: 34239084 [TBL] [Abstract][Full Text] [Related]
17. Inverse temperature dependence of toughness in an ultrafine grain-structure steel. Kimura Y; Inoue T; Yin F; Tsuzaki K Science; 2008 May; 320(5879):1057-60. PubMed ID: 18497294 [TBL] [Abstract][Full Text] [Related]
18. Combination of dynamic transformation and dynamic recrystallization for realizing ultrafine-grained steels with superior mechanical properties. Zhao L; Park N; Tian Y; Shibata A; Tsuji N Sci Rep; 2016 Dec; 6():39127. PubMed ID: 27966603 [TBL] [Abstract][Full Text] [Related]
19. Segregation stabilizes nanocrystalline bulk steel with near theoretical strength. Li Y; Raabe D; Herbig M; Choi PP; Goto S; Kostka A; Yarita H; Borchers C; Kirchheim R Phys Rev Lett; 2014 Sep; 113(10):106104. PubMed ID: 25238372 [TBL] [Abstract][Full Text] [Related]
20. The influence of cooling conditions on grain size, secondary phase precipitates and mechanical properties of biomedical alloy specimens produced by investment casting. Kaiser R; Williamson K; O'Brien C; Ramirez-Garcia S; Browne DJ J Mech Behav Biomed Mater; 2013 Aug; 24():53-63. PubMed ID: 23683759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]