These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 34685028)
1. Features of Hydrogen Reduction of Fe(CN) Solovov R; Ershov B Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34685028 [TBL] [Abstract][Full Text] [Related]
2. Reductive dechlorination of 3,3',4,4'-tetrachlorobiphenyl (PCB77) using palladium or palladium/iron nanoparticles and assessment of the reduction in toxic potency in vascular endothelial cells. Venkatachalam K; Arzuaga X; Chopra N; Gavalas VG; Xu J; Bhattacharyya D; Hennig B; Bachas LG J Hazard Mater; 2008 Nov; 159(2-3):483-91. PubMed ID: 18423858 [TBL] [Abstract][Full Text] [Related]
3. Cyanation of aryl bromides with K4[Fe(CN)6] catalyzed by dichloro[bis{1-(dicyclohexylphosphanyl)piperidine}]palladium, a molecular source of nanoparticles, and the reactions involved in the catalyst-deactivation processes. Gerber R; Oberholzer M; Frech CM Chemistry; 2012 Mar; 18(10):2978-86. PubMed ID: 22298440 [TBL] [Abstract][Full Text] [Related]
4. Palladium nanoparticles dispersed on functionalized macadamia nutshell biomass for formic acid-mediated removal of chromium(VI) from aqueous solution. Moyo M; Modise SJ; Pakade VE Sci Total Environ; 2020 Nov; 743():140614. PubMed ID: 32659556 [TBL] [Abstract][Full Text] [Related]
5. Preparation of PAMAM- and PPI-metal (silver, platinum, and palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol. Esumi K; Isono R; Yoshimura T Langmuir; 2004 Jan; 20(1):237-43. PubMed ID: 15745027 [TBL] [Abstract][Full Text] [Related]
6. Tannic Acid: A green and efficient stabilizer of Au, Ag, Cu and Pd nanoparticles for the 4-Nitrophenol Reduction, Suzuki-Miyaura coupling reactions and click reactions in aqueous solution. Liu F; Liu X; Chen F; Fu Q J Colloid Interface Sci; 2021 Dec; 604():281-291. PubMed ID: 34271489 [TBL] [Abstract][Full Text] [Related]
7. Efficient catalytic reduction of highly toxic aqueous Cr(VI) with Fe@CBC/Pd composites at room temperature. Ma B; Zhu J; Sun B; Chen C; Sun D Environ Sci Pollut Res Int; 2021 Feb; 28(7):8569-8575. PubMed ID: 33067787 [TBL] [Abstract][Full Text] [Related]
8. Efficient degradation of sodium diclofenac via heterogeneous Fenton reaction boosted by Pd/Fe@Fe Wei X; Zhu N; Huang X; Kang N; Wu P; Dang Z J Environ Manage; 2020 Apr; 260():110072. PubMed ID: 32090815 [TBL] [Abstract][Full Text] [Related]
9. Tuning the surfaces of palladium nanoparticles for the catalytic conversion of Cr(VI) to Cr(III). K'Owino IO; Omole MA; Sadik OA J Environ Monit; 2007 Jul; 9(7):657-65. PubMed ID: 17607385 [TBL] [Abstract][Full Text] [Related]
10. Palladium nanoparticles produced by fermentatively cultivated bacteria as catalyst for diatrizoate removal with biogenic hydrogen. Hennebel T; Van Nevel S; Verschuere S; De Corte S; De Gusseme B; Cuvelier C; Fitts JP; van der Lelie D; Boon N; Verstraete W Appl Microbiol Biotechnol; 2011 Sep; 91(5):1435-45. PubMed ID: 21590286 [TBL] [Abstract][Full Text] [Related]
11. Hydrogenation of nitrotoluene using palladium supported on chitosan hollow fiber: catalyst characterization and influence of operative parameters studied by experimental design methodology. Blondet FP; Vincent T; Guibal E Int J Biol Macromol; 2008 Jul; 43(1):69-78. PubMed ID: 18249056 [TBL] [Abstract][Full Text] [Related]
12. Adsorption of platinum(IV) and palladium(II) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine. Zhou L; Xu J; Liang X; Liu Z J Hazard Mater; 2010 Oct; 182(1-3):518-24. PubMed ID: 20621417 [TBL] [Abstract][Full Text] [Related]
13. Palladium bionanoparticles production from acidic Pd(II) solutions and spent catalyst leachate using acidophilic Fe(III)-reducing bacteria. Okibe N; Nakayama D; Matsumoto T Extremophiles; 2017 Nov; 21(6):1091-1100. PubMed ID: 29027017 [TBL] [Abstract][Full Text] [Related]
14. RNA-mediated, green synthesis of palladium nanodendrites for catalytic reduction of nitroarenes. Topuz F; Uyar T J Colloid Interface Sci; 2019 May; 544():206-216. PubMed ID: 30849618 [TBL] [Abstract][Full Text] [Related]
15. Suzuki cross-coupling reactions catalyzed by palladium nanoparticles in aqueous solution. Li Y; Hong XM; Collard DM; El-Sayed MA Org Lett; 2000 Jul; 2(15):2385-8. PubMed ID: 10930290 [TBL] [Abstract][Full Text] [Related]
16. Photothermal and colorimetric dual mode detection of nanomolar ferric ions in environmental sample based on in situ generation of prussian blue nanoparticles. Xue X; Gao M; Rao H; Luo M; Wang H; An P; Feng T; Lu X; Xue Z; Liu X Anal Chim Acta; 2020 Apr; 1105():197-207. PubMed ID: 32138919 [TBL] [Abstract][Full Text] [Related]
17. Small palladium islands embedded in palladium-tungsten bimetallic nanoparticles form catalytic hotspots for oxygen reduction. Hu G; Nitze F; Gracia-Espino E; Ma J; Barzegar HR; Sharifi T; Jia X; Shchukarev A; Lu L; Ma C; Yang G; Wågberg T Nat Commun; 2014 Oct; 5():5253. PubMed ID: 25308245 [TBL] [Abstract][Full Text] [Related]
18. Effects of metal ions on the reactivity and corrosion electrochemistry of Fe/FeS nanoparticles. Kim EJ; Kim JH; Chang YS; Turcio-Ortega D; Tratnyek PG Environ Sci Technol; 2014 Apr; 48(7):4002-11. PubMed ID: 24579799 [TBL] [Abstract][Full Text] [Related]
19. Redox reactions of ferricyanide ions in layer-by-layer deposited polysaccharide films: a significant effect of the type of polycation in the films. Wang B; Anzai J Langmuir; 2007 Jun; 23(13):7378-84. PubMed ID: 17503859 [TBL] [Abstract][Full Text] [Related]
20. Removal of vanadium and palladium ions by adsorption onto magnetic chitosan nanoparticles. Omidinasab M; Rahbar N; Ahmadi M; Kakavandi B; Ghanbari F; Kyzas GZ; Martinez SS; Jaafarzadeh N Environ Sci Pollut Res Int; 2018 Dec; 25(34):34262-34276. PubMed ID: 30291614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]