BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34685064)

  • 1. Iron-Doped ZnO Nanoparticles as Multifunctional Nanoplatforms for Theranostics.
    Carofiglio M; Laurenti M; Vighetto V; Racca L; Barui S; Garino N; Gerbaldo R; Laviano F; Cauda V
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doped Zinc Oxide Nanoparticles: Synthesis, Characterization and Potential Use in Nanomedicine.
    Carofiglio M; Barui S; Cauda V; Laurenti M
    Appl Sci (Basel); 2020 Aug; 10(15):5194. PubMed ID: 33850629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic Phenomena between Iron-Doped ZnO Nanoparticles and Shock Waves Exploited against Pancreatic Cancer Cells.
    Carofiglio M; Conte M; Racca L; Cauda V
    ACS Appl Nano Mater; 2022 Nov; 5(11):17212-17225. PubMed ID: 36851991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced cytotoxic and genotoxic effects of gadolinium-doped ZnO nanoparticles on irradiated lung cancer cells at megavoltage radiation energies.
    Zangeneh M; Nedaei HA; Mozdarani H; Mahmoudzadeh A; Salimi M
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109739. PubMed ID: 31349426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategy of metal iron doping and green-mediated ZnO nanoparticles: dissolubility, antibacterial and cytotoxic traits.
    Aiswarya Devi S; Harshiny M; Udaykumar S; Gopinath P; Matheswaran M
    Toxicol Res (Camb); 2017 Nov; 6(6):854-865. PubMed ID: 30090548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the selective cancer killing ability of ZnO nanoparticles using Fe doping.
    Thurber A; Wingett DG; Rasmussen JW; Layne J; Johnson L; Tenne DA; Zhang J; Hanna CB; Punnoose A
    Nanotoxicology; 2012 Jun; 6(4):440-52. PubMed ID: 21635174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the toxicity of pure and samarium-doped zinc oxide nanoparticles to the green microalga Chlorella vulgaris.
    Feizi S; Kosari-Nasab M; Divband B; Mahjouri S; Movafeghi A
    Environ Sci Pollut Res Int; 2022 May; 29(21):32002-32015. PubMed ID: 35015233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Sulfur Doping and Temperature on the Energy Bandgap of ZnO Nanoparticles and Their Antibacterial Activities.
    Aga KW; Efa MT; Beyene TT
    ACS Omega; 2022 Mar; 7(12):10796-10803. PubMed ID: 35382288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monodisperse magnetic nanoparticles for theranostic applications.
    Ho D; Sun X; Sun S
    Acc Chem Res; 2011 Oct; 44(10):875-82. PubMed ID: 21661754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of iron doping on the structural, optical, surface morphological, and temperature-dependent magnetic properties of ZnO nanoparticles.
    Anbuselvan D; Nilavazhagan S; Santhanam A; Chidhambaram N; Kanimozhi G; Ahamad T; Alshehri SM
    J Phys Condens Matter; 2021 Mar; 33(9):094001. PubMed ID: 33232954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, Characterization, and Toxicity Assessment of Zinc Oxide-Doped Manganese Oxide Nanoparticles in a Macrophage Model.
    Alsaleh NB; Aljarbou AM; Assal ME; Assiri MA; Almutairi MM; As Sobeai HM; Alshamrani AA; Almudimeegh S; Hatshan MR; Adil SF
    Pharmaceuticals (Basel); 2024 Jan; 17(2):. PubMed ID: 38399383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic liquid - A greener templating agent with Justicia adhatoda plant extract assisted green synthesis of morphologically improved Ag-Au/ZnO nanostructure and it's antibacterial and anticancer activities.
    Pandiyan N; Murugesan B; Arumugam M; Sonamuthu J; Samayanan S; Mahalingam S
    J Photochem Photobiol B; 2019 Sep; 198():111559. PubMed ID: 31344503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study on Cu and Ag doped ZnO nanoparticles for the photocatalytic degradation of brilliant green dye: synthesis and characterization.
    Gnanaprakasam A; Sivakumar VM; Thirumarimurugan M
    Water Sci Technol; 2016 Sep; 74(6):1426-1435. PubMed ID: 27685972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dye-doped biodegradable nanoparticle SiO
    Navarro-Palomares E; González-Saiz P; Renero-Lecuna C; Martín-Rodríguez R; Aguado F; González-Alonso D; Fernández Barquín L; González J; Bañobre-López M; Fanarraga ML; Valiente R
    Nanoscale; 2020 Mar; 12(10):6164-6175. PubMed ID: 32133463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron-doped zinc oxide nanoparticles-triggered elicitation of important phenolic compounds in cell cultures of
    Khan AU; Khan T; Khan MA; Nadhman A; Aasim M; Khan NZ; Ali W; Nazir N; Zahoor M
    Plant Cell Tissue Organ Cult; 2021; 147(2):287-296. PubMed ID: 34149126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast and Effective Removal of Congo Red by Doped ZnO Nanoparticles.
    Sachin ; Pramanik BK; Singh N; Zizhou R; Houshyar S; Cole I; Yin H
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc oxide and ferric oxide nanoparticles combination increase plant growth, yield, and quality of soybean under semiarid region.
    Yadav A; Babu S; Krishnan P; Kaur B; Bana RS; Chakraborty D; Kumar V; Joshi B; Lal SK
    Chemosphere; 2024 Mar; 352():141432. PubMed ID: 38368965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating the in vitro cytotoxicity of the newly emerged zinc oxide (ZnO) doped chromium nanoparticles using the human fetal lung fibroblast cells (WI38 cells).
    Abdel-Gawad DRI; Shaban NS; Moselhy WA; El-Dek SI; Ibrahim MA; Azab AA; Hassan NEY
    J Trace Elem Med Biol; 2024 Jan; 81():127342. PubMed ID: 38016358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Mg Doping on ZnO Nanoparticles for Enhanced Photocatalytic Evaluation and Antibacterial Analysis.
    Pradeev Raj K; Sadaiyandi K; Kennedy A; Sagadevan S; Chowdhury ZZ; Johan MRB; Aziz FA; Rafique RF; Thamiz Selvi R; Rathina Bala R
    Nanoscale Res Lett; 2018 Aug; 13(1):229. PubMed ID: 30076473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-CD38 targeted nanotrojan horses stimulated by acoustic waves as therapeutic nanotools selectively against Burkitt's lymphoma cells.
    Vighetto V; Conte M; Rosso G; Carofiglio M; Sidoti Abate F; Racca L; Mesiano G; Cauda V
    Discov Nano; 2024 Feb; 19(1):28. PubMed ID: 38353903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.