BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 34685090)

  • 1. Metal Cluster Size-Dependent Activation Energies of Growth of Single-Chirality Single-Walled Carbon Nanotubes inside Metallocene-Filled Single-Walled Carbon Nanotubes.
    Kharlamova MV; Kramberger C
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-Dependent Growth of 36 Inner Nanotubes inside Nickelocene, Cobaltocene and Ferrocene-Filled Single-Walled Carbon Nanotubes.
    Kharlamova MV; Kramberger C
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chirality-dependent growth of single-wall carbon nanotubes as revealed inside nano-test tubes.
    Kharlamova MV; Kramberger C; Saito T; Sato Y; Suenaga K; Pichler T; Shiozawa H
    Nanoscale; 2017 Jun; 9(23):7998-8006. PubMed ID: 28574066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman spectroscopy of optical transitions and vibrational energies of ∼1 nm HgTe extreme nanowires within single walled carbon nanotubes.
    Spencer JH; Nesbitt JM; Trewhitt H; Kashtiban RJ; Bell G; Ivanov VG; Faulques E; Sloan J; Smith DC
    ACS Nano; 2014 Sep; 8(9):9044-52. PubMed ID: 25163005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of growth dynamics of carbon nanotubes.
    Kharlamova MV
    Beilstein J Nanotechnol; 2017; 8():826-856. PubMed ID: 28503394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unveiling the Evolutions of Nanotube Diameter Distribution during the Growth of Single-Walled Carbon Nanotubes.
    Navas H; Picher M; Andrieux-Ledier A; Fossard F; Michel T; Kozawa A; Maruyama T; Anglaret E; Loiseau A; Jourdain V
    ACS Nano; 2017 Mar; 11(3):3081-3088. PubMed ID: 28285520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studying single-wall carbon nanotubes through encapsulation: from optical methods till magnetic resonance.
    Simon F
    J Nanosci Nanotechnol; 2007; 7(4-5):1197-220. PubMed ID: 17450887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metallocene-Filled Single-Walled Carbon Nanotube Hybrids.
    Kharlamova MV; Kramberger C
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single walled carbon nanotube growth and chirality dependence on catalyst composition.
    Orbaek AW; Owens AC; Crouse CC; Pint CL; Hauge RH; Barron AR
    Nanoscale; 2013 Oct; 5(20):9848-59. PubMed ID: 23974219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phemenology of Filling, Investigation of Growth Kinetics and Electronic Properties for Applications of Filled Single-Walled Carbon Nanotubes.
    Kharlamova MV; Kramberger C
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple Dip-Coating Process for the Synthesis of Small Diameter Single-Walled Carbon Nanotubes-Effect of Catalyst Composition and Catalyst Particle Size on Chirality and Diameter.
    Barzegar HR; Nitze F; Sharifi T; Ramstedt M; Tai CW; Malolepszy A; Stobinski L; Wågberg T
    J Phys Chem C Nanomater Interfaces; 2012 Jun; 116(22):12232-12239. PubMed ID: 22741029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and dynamics of metallic and carburized catalytic Ni nanoparticles: effects on growth of single-walled carbon nanotubes.
    Gomez-Ballesteros JL; Balbuena PB
    Phys Chem Chem Phys; 2015 Jun; 17(22):15056-64. PubMed ID: 25989515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dielectric Screening inside Carbon Nanotubes.
    Gordeev G; Wasserroth S; Li H; Jorio A; Flavel BS; Reich S
    Nano Lett; 2024 Jun; ():. PubMed ID: 38912680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The intermediate frequency modes of single- and double-walled carbon nanotubes: a Raman spectroscopic and in situ Raman spectroelectrochemical study.
    Kalbac M; Kavan L; Zukalová M; Dunsch L
    Chemistry; 2006 May; 12(16):4451-7. PubMed ID: 16552794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validity of Measuring Metallic and Semiconducting Single-Walled Carbon Nanotube Fractions by Quantitative Raman Spectroscopy.
    Tian Y; Jiang H; Laiho P; Kauppinen EI
    Anal Chem; 2018 Feb; 90(4):2517-2525. PubMed ID: 29334731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the origin of preferential growth of semiconducting single-walled carbon nanotubes.
    Li Y; Peng S; Mann D; Cao J; Tu R; Cho KJ; Dai H
    J Phys Chem B; 2005 Apr; 109(15):6968-71. PubMed ID: 16851791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth mechanism of single-walled carbon nanotube from catalytic reaction inside carbon nanotube template.
    Izu Y; Shiomi J; Takagi Y; Okada S; Maruyama S
    ACS Nano; 2010 Aug; 4(8):4769-75. PubMed ID: 20731452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diameter and chirality changes of single-walled carbon nanotubes during growth: an ab-initio study.
    Zhu W; Duan H; Bolton K
    J Nanosci Nanotechnol; 2009 Feb; 9(2):1222-5. PubMed ID: 19441492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size engineering of metal nanoparticles to diameter-specified growth of single-walled carbon nanotubes with horizontal alignment on quartz.
    Kim JJ; Lee BJ; Lee SH; Jeong GH
    Nanotechnology; 2012 Mar; 23(10):105607. PubMed ID: 22362281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raman characterization of single-walled nanotubes of various diameters obtained by catalytic disproportionation of CO.
    Herrera JE; Balzano L; Pompeo F; Resasco DE
    J Nanosci Nanotechnol; 2003; 3(1-2):133-8. PubMed ID: 12908241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.