These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34685133)

  • 1. Strain Effects on the Electronic and Optical Properties of Kesterite Cu
    El Hamdaoui J; El-Yadri M; Farkous M; Kria M; Courel M; Ojeda M; Pérez LM; Tiutiunnyk A; Laroze D; Feddi EM
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and photoelectric properties of Cu2ZnGeS4 and Cu2ZnGeSe4 single-crystalline nanowire arrays.
    Shi L; Yin P; Zhu H; Li Q
    Langmuir; 2013 Jul; 29(27):8713-7. PubMed ID: 23802168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing the electronic structure, heterojunction band offset and alignment of Cu
    Rondiya SR; Buldu DG; Brammertz G; Jadhav YA; Cross RW; Ghosh HN; Davies TE; Jadkar SR; Dzade NY; Vermang B
    Phys Chem Chem Phys; 2021 Apr; 23(15):9553-9560. PubMed ID: 33885069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain-induced band modulation and excellent stability, transport and optical properties of penta-MP
    Kumar V; Roy DR
    Nanoscale Adv; 2020 Oct; 2(10):4566-4580. PubMed ID: 36132893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Band gap engineering of FeS2 under biaxial strain: a first principles study.
    Xiao P; Fan XL; Liu LM; Lau WM
    Phys Chem Chem Phys; 2014 Nov; 16(44):24466-72. PubMed ID: 25308322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disorder induced band gap lowering in kesterite type Cu
    Fritsch D; Schorr S
    J Phys Condens Matter; 2024 Jun; 36(37):. PubMed ID: 38821076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain effects on the electronic, optical and electrical properties of Cu
    Kahlaoui S; Belhorma B; Labrim H; Boujnah M; Regragui M
    Heliyon; 2020 Apr; 6(4):e03713. PubMed ID: 32346627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic, optical, and thermoelectric properties of Janus In-based monochalcogenides.
    Vu TV; Vi VTT; Phuc HV; Nguyen CV; Poklonski NA; Duque CA; Rai DP; Hoi BD; Hieu NN
    J Phys Condens Matter; 2021 May; 33(22):. PubMed ID: 33784649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphate-free synthesis, optical absorption and photoelectric properties of Cu2ZnGeS4 and Cu2ZnGeSe4 uniform nanocrystals.
    Shi L; Yin P
    Dalton Trans; 2013 Oct; 42(37):13607-11. PubMed ID: 23900582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indium selenide monolayer: strain-enhanced optoelectronic response and dielectric environment-tunable 2D exciton features.
    Amara IB; Hichri A; Jaziri S
    J Phys Condens Matter; 2017 Dec; 29(50):505302. PubMed ID: 29171963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The electronic and optical properties of quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs: a first-principles study.
    Ma X; Li D; Zhao S; Li G; Yang K
    Nanoscale Res Lett; 2014; 9(1):580. PubMed ID: 25337061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring the electronic, thermal and optical properties of two-dimensional MoO
    Ersan F; Sarikurt S
    Phys Chem Chem Phys; 2019 Sep; 21(36):19904-19914. PubMed ID: 31475268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Electronic and Optical Properties of InSe-GeTe Heterobilayer via Applying Biaxial Strain.
    Yang G; Sun R; Gu Y; Xie F; Ding Y; Zhang X; Wang Y; Hua B; Ni X; Fan Q; Gu X
    Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31795272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Origin of the Band Gap Anomaly of Quaternary Alloy Cd(x)Zn(1-x)S(y)Se(1-y) Nanowires, Nanobelts, and Nanosheets in the Visible Spectrum.
    Kwon SJ; Jeong HM; Jung K; Ko DH; Ko H; Han IK; Kim GT; Park JG
    ACS Nano; 2015 May; 9(5):5486-99. PubMed ID: 25897466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain-tunable electronic and optical properties of novel anisotropic green phosphorene: a first-principles study.
    Chen QY; Liu MY; Cao C; He Y
    Nanotechnology; 2019 Aug; 30(33):335710. PubMed ID: 31035273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural Intermediate Band in I
    Liu Q; Cai Z; Han D; Chen S
    Sci Rep; 2018 Jan; 8(1):1604. PubMed ID: 29371660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic and optical properties of a Janus SnSSe monolayer: effects of strain and electric field.
    Nguyen HTT; Tuan VV; Nguyen CV; Phuc HV; Tong HD; Nguyen ST; Hieu NN
    Phys Chem Chem Phys; 2020 May; 22(20):11637-11643. PubMed ID: 32406452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetism of Kesterite Cu
    Lejda K; Drygaś M; Janik JF; Szczytko J; Twardowski A; Olejniczak Z
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32784643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RF Electromagnetic Field Treatment of Tetragonal Kesterite CZTSSe Light Absorbers.
    Semenenko MO; Babichuk IS; Kyriienko O; Bodnar IV; Caballero R; Leon M
    Nanoscale Res Lett; 2017 Dec; 12(1):408. PubMed ID: 28618716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.