These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34685162)

  • 1. Optical Properties of Plasma Dimer Nanoparticles for Solar Energy Absorption.
    Sun C; Qin C; Zhai H; Zhang B; Wu X
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The optical properties of dumbbell-type nanorods for solar photothermal conversion.
    Sun C; Qin C; Zou Y; Liu H; Zhang B; Wu X
    Phys Chem Chem Phys; 2022 Nov; 24(45):27949-27956. PubMed ID: 36373562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of morphological evolution and aggregation of plasmonic core-shell nanostructures on solar thermal conversion.
    Xing L; Wang R; Ha Y; Li Z
    Appl Opt; 2023 Jul; 62(19):5195-5201. PubMed ID: 37707223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absorption characteristics of a metal-insulator-metal nanodisk for solar thermal applications.
    Qin C; Guo Y; Seo J; Shuai Y; Lee J; Lee BJ
    Opt Express; 2020 May; 28(10):15731-15743. PubMed ID: 32403594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and measurement of fiber optic localized surface plasmon resonance sensor based on gold nanoparticle dimer.
    Kim HM; Park JH; Lee SK
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov; 261():120034. PubMed ID: 34116419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles.
    Zhao J; Jensen L; Sung J; Zou S; Schatz GC; Duyne RP
    J Am Chem Soc; 2007 Jun; 129(24):7647-56. PubMed ID: 17521187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model.
    Kim RS; Zhu J; Park JH; Li L; Yu Z; Shen H; Xue M; Wang KL; Park G; Anderson TJ; Pei Q
    Opt Express; 2012 Jun; 20(12):12649-57. PubMed ID: 22714293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photothermal properties of plasmonic nanoshell-blended nanofluid for direct solar thermal absorption.
    Duan H; Chen R; Zheng Y; Xu C
    Opt Express; 2018 Nov; 26(23):29956-29967. PubMed ID: 30469877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SiO(2) /TiO(2) hollow nanoparticles decorated with Ag nanoparticles: enhanced visible light absorption and improved light scattering in dye-sensitized solar cells.
    Hwang SH; Shin DH; Yun J; Kim C; Choi M; Jang J
    Chemistry; 2014 Apr; 20(15):4439-46. PubMed ID: 24591121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon resonance enhanced optical absorption in inverted polymer/fullerene solar cells with metal nanoparticle-doped solution-processable TiO2 layer.
    Xu MF; Zhu XZ; Shi XB; Liang J; Jin Y; Wang ZK; Liao LS
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):2935-42. PubMed ID: 23510437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale Plasmonic Refractory Nanocomposites for High-Temperature Solar Photothermal Conversion.
    Huang Z; Cao C; Wang Q; Zhang H; Owens CE; Hart AJ; Cui K
    Nano Lett; 2022 Nov; 22(21):8526-8533. PubMed ID: 36302098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical-electrical-thermal optimization of plasmon-enhanced perovskite solar cells.
    Ren H; Ren X; Niu K; Wang S; Huang Z; Wu X
    Phys Chem Chem Phys; 2020 Aug; 22(30):17068-17074. PubMed ID: 32643730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Super absorption of solar energy using a plasmonic nanoparticle based CdTe solar cell.
    Rehman Q; Khan AD; Khan AD; Noman M; Ali H; Rauf A; Ahmad MS
    RSC Adv; 2019 Oct; 9(59):34207-34213. PubMed ID: 35530006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion.
    Ma C; Yan J; Huang Y; Wang C; Yang G
    Sci Adv; 2018 Aug; 4(8):eaas9894. PubMed ID: 30105303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring the Spectral Absorption Coefficient of aBlended Plasmonic Nanofluid Using a CustomizedGenetic Algorithm.
    Seo J; Qin C; Lee J; Lee BJ
    Sci Rep; 2020 Jun; 10(1):8891. PubMed ID: 32483286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broad-Band-Enhanced Plasmonic Perovskite Solar Cells with Irregular Silver Nanomaterials.
    Wu Y; Sun X; Dai S; Li M; Zheng L; Wen Q; Tang B; Yun DQ; Xiao L
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16269-16278. PubMed ID: 35348334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Space-Confined Seeded Growth of Black Silver Nanostructures for Solar Steam Generation.
    Chen J; Feng J; Li Z; Xu P; Wang X; Yin W; Wang M; Ge X; Yin Y
    Nano Lett; 2019 Jan; 19(1):400-407. PubMed ID: 30561210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-Shaped Ag Nanoparticles in the Plasmonic Layer of Dye-Sensitized Solar Cells for Increased Power Conversion Efficiency.
    Song DH; Kim HS; Suh JS; Jun BH; Rho WY
    Nanomaterials (Basel); 2017 Jun; 7(6):. PubMed ID: 28587217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New hybridization coupling mechanism and enhanced sensitivity in a Cu
    Cao P; Liang M; Wu Y; Li Y; Cheng L
    Nanotechnology; 2020 Sep; 31(36):365501. PubMed ID: 32443000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.