These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 34685207)

  • 21. Quinone/ester-based oxygen functional group-incorporated full carbon Li-ion capacitor for enhanced performance.
    Cai P; Zou K; Zou G; Hou H; Ji X
    Nanoscale; 2020 Feb; 12(6):3677-3685. PubMed ID: 31993622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FeNb
    Kong S; Zhang X; Jin B; Guo X; Zhang G; Huang H; Xiang X; Cheng K
    RSC Adv; 2021 Sep; 11(51):32248-32257. PubMed ID: 35495531
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Achieving High-Energy-Density Graphene/Single-Walled Carbon Nanotube Lithium-Ion Capacitors from Organic-Based Electrolytes.
    Yin H; Tang J; Zhang K; Lin S; Xu G; Qin LC
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202500
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonaqueous lithium-ion capacitors with high energy densities using trigol-reduced graphene oxide nanosheets as cathode-active material.
    Aravindan V; Mhamane D; Ling WC; Ogale S; Madhavi S
    ChemSusChem; 2013 Dec; 6(12):2240-4. PubMed ID: 23939711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A High-Performance Lithium-Ion Capacitor Based on 2D Nanosheet Materials.
    Li S; Chen J; Cui M; Cai G; Wang J; Cui P; Gong X; Lee PS
    Small; 2017 Feb; 13(6):. PubMed ID: 27893190
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sodium-ion capacitors: Materials, Mechanism, and Challenges.
    Zhang Y; Jiang J; An Y; Wu L; Dou H; Zhang J; Zhang Y; Wu S; Dong M; Zhang X; Guo Z
    ChemSusChem; 2020 May; 13(10):2522-2539. PubMed ID: 32045509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graphene-Based Materials for Lithium-Ion Hybrid Supercapacitors.
    Ma Y; Chang H; Zhang M; Chen Y
    Adv Mater; 2015 Sep; 27(36):5296-308. PubMed ID: 26293692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbon-Based Modification Materials for Lithium-ion Battery Cathodes: Advances and Perspectives.
    Zhou L; Yang H; Han T; Song Y; Yang G; Li L
    Front Chem; 2022; 10():914930. PubMed ID: 35755257
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Binder-free boron-doped Si nanowires toward the enhancement of lithium-ion capacitor.
    Li M; Song S; Li Y; Jevasuwan W; Fukata N; Bae J
    Nanotechnology; 2023 Jun; 34(35):. PubMed ID: 37207636
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prelithiation Bridges the Gap for Developing Next-Generation Lithium-Ion Batteries/Capacitors.
    Li F; Cao Y; Wu W; Wang G; Qu D
    Small Methods; 2022 Jul; 6(7):e2200411. PubMed ID: 35680608
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Comprehensive Review of Lithium-Ion Capacitor Technology: Theory, Development, Modeling, Thermal Management Systems, and Applications.
    Karimi D; Behi H; Van Mierlo J; Berecibar M
    Molecules; 2022 May; 27(10):. PubMed ID: 35630595
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A high energy and power Li-ion capacitor based on a TiO2 nanobelt array anode and a graphene hydrogel cathode.
    Wang H; Guan C; Wang X; Fan HJ
    Small; 2015 Mar; 11(12):1470-7. PubMed ID: 25366170
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Boron Carbonitride Lithium-Ion Capacitors with an Electrostatically Expanded Operating Voltage Window.
    Jiang H; Shi D; Sun X; Wang S; Li Y; Chang B; Zhang B; Shao Y; Wu Y; Hao X
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47425-47434. PubMed ID: 32975401
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-Energy and High-Power Nonaqueous Lithium-Ion Capacitors Based on Polypyrrole/Carbon Nanotube Composites as Pseudocapacitive Cathodes.
    Han C; Shi R; Zhou D; Li H; Xu L; Zhang T; Li J; Kang F; Wang G; Li B
    ACS Appl Mater Interfaces; 2019 May; 11(17):15646-15655. PubMed ID: 30945842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Holey Ti
    Zhou HY; Lin LW; Sui ZY; Wang HY; Han BH
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):12161-12170. PubMed ID: 36812348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Graphene: a promising 2D material for electrochemical energy storage.
    Dong Y; Wu ZS; Ren W; Cheng HM; Bao X
    Sci Bull (Beijing); 2017 May; 62(10):724-740. PubMed ID: 36659445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MnCO
    Natarajan S; Akshay M; Aravindan V
    Small; 2023 Apr; 19(17):e2206226. PubMed ID: 36693780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of a Flexible Freestanding Sulfur/Polyacrylonitrile/Graphene Oxide as the Cathode for Lithium/Sulfur Batteries.
    Peng H; Wang X; Zhao Y; Tan T; Bakenov Z; Zhang Y
    Polymers (Basel); 2018 Apr; 10(4):. PubMed ID: 30966434
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrahigh-Capacity Lithium-Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes.
    Lin Y; Moitoso B; Martinez-Martinez C; Walsh ED; Lacey SD; Kim JW; Dai L; Hu L; Connell JW
    Nano Lett; 2017 May; 17(5):3252-3260. PubMed ID: 28362096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dispersion-Assembly Approach to Synthesize Three-Dimensional Graphene/Polymer Composite Aerogel as a Powerful Organic Cathode for Rechargeable Li and Na Batteries.
    Zhang Y; Huang Y; Yang G; Bu F; Li K; Shakir I; Xu Y
    ACS Appl Mater Interfaces; 2017 May; 9(18):15549-15556. PubMed ID: 28425698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.