These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34685240)

  • 1. Hydraulically Coupled Dielectric Elastomer Actuators for a Bioinspired Suction Cup.
    Zhang C; Liu L; Xu K; Dong Z; Ding Y; Li Q; Li P
    Polymers (Basel); 2021 Oct; 13(20):. PubMed ID: 34685240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soft octopus-inspired suction cups using dielectric elastomer actuators with sensing capabilities.
    Jamali A; Mishra DB; Goldschmidtboeing F; Woias P
    Bioinspir Biomim; 2024 Apr; 19(3):. PubMed ID: 38467068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Soft End Effector Inspired by Cephalopod Suckers and Augmented by a Dielectric Elastomer Actuator.
    Sholl N; Moss A; Kier WM; Mohseni K
    Soft Robot; 2019 Jun; 6(3):356-367. PubMed ID: 30848723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectric elastomer actuators for octopus inspired suction cups.
    Follador M; Tramacere F; Mazzolai B
    Bioinspir Biomim; 2014 Sep; 9(4):046002. PubMed ID: 25253019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stickiness in shear: stiffness, shape, and sealing in bioinspired suction cups affect shear performance on diverse surfaces.
    Hernandez AM; Sandoval JA; Yuen MC; Wood RJ
    Bioinspir Biomim; 2024 Mar; 19(3):. PubMed ID: 38528733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization and demonstration of two types of spring-roll dielectric elastomer actuators for minimally invasive surgery.
    Wang H; Cui S; Niu F
    Front Bioeng Biotechnol; 2022; 10():1016350. PubMed ID: 36267447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of suction-based gripping strategies in wildlife towards future evolutions of the obstetrical suction cup.
    Vallet Y; Laurent C; Bertholdt C; Rahouadj R; Morel O
    Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 36206746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinspired Variable Stiffness Dielectric Elastomer Actuators with Large and Tunable Load Capacity.
    Li WB; Zhang WM; Zou HX; Peng ZK; Meng G
    Soft Robot; 2019 Oct; 6(5):631-643. PubMed ID: 31058574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectric Elastomer Actuator Driven Soft Robotic Structures With Bioinspired Skeletal and Muscular Reinforcement.
    Franke M; Ehrenhofer A; Lahiri S; Henke EM; Wallmersperger T; Richter A
    Front Robot AI; 2020; 7():510757. PubMed ID: 33501298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biorobotic adhesion in water using suction cups.
    Bandyopadhyay PR; Hrubes JD; Leinhos HA
    Bioinspir Biomim; 2008 Mar; 3():016003. PubMed ID: 18364562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectric Elastomer Actuators for Soft Wave-Handling Systems.
    Wang T; Zhang J; Hong J; Wang MY
    Soft Robot; 2017 Mar; 4(1):61-69. PubMed ID: 29182100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unlocking Versatility: Magnetic-Actuated Deployable Suction Gripper for Complex Surface Handling.
    Kortman VG; de Vries E; Jovanova J; Sakes A
    Soft Robot; 2024 Jun; ():. PubMed ID: 38836749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the Pneumatic System Parameters of the Suction Cup Integrated with the Head for Harvesting Strawberry Fruit.
    Kurpaska S; Sobol Z; Pedryc N; Hebda T; Nawara P
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32781604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A bioinspired stiffness tunable sucker for passive adaptation and firm attachment to angular substrates.
    Goshtasbi A; Sadeghi A
    Front Robot AI; 2023; 10():1080015. PubMed ID: 36824985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorption of trace metals by standard and micro suction cups in the absence and presence of dissolved organic carbon.
    Rais D; Nowack B; Schulin R; Luster J
    J Environ Qual; 2006; 35(1):50-60. PubMed ID: 16391276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Deformable Motor Driven by Dielectric Elastomer Actuators and Flexible Mechanisms.
    Minaminosono A; Shigemune H; Okuno Y; Katsumata T; Hosoya N; Maeda S
    Front Robot AI; 2019; 6():1. PubMed ID: 33501018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of soft and rough substrates on suction-based adhesion.
    Huie JM; Summers AP
    J Exp Biol; 2022 May; 225(9):. PubMed ID: 35467004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical implications of design characteristics, flow rates, and suction pressure attributes in commercially available training cups.
    Scarborough DR; Bailey-Van Kuren M; Frey KE; Knatz ED; Lape AR; Wambaugh NM
    J Pediatr Rehabil Med; 2010; 3(3):187-96. PubMed ID: 21791850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi.
    Baik S; Kim DW; Park Y; Lee TJ; Ho Bhang S; Pang C
    Nature; 2017 Jun; 546(7658):396-400. PubMed ID: 28617467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.