These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34685312)

  • 1. An Artificial Lens Capsule with a Lens Radial Stretching System Mimicking Dynamic Eye Focusing.
    Wei H; Wolffsohn JS; Gomes de Oliveira O; Davies LN
    Polymers (Basel); 2021 Oct; 13(20):. PubMed ID: 34685312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterisation and Modelling of an Artificial Lens Capsule Mimicking Accommodation of Human Eyes.
    Wei H; Wolffsohn JS; Gomes de Oliveira O; Davies LN
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biomechanical model for evaluating the performance of accommodative intraocular lenses.
    Ameku KA; Pedrigi RM
    J Biomech; 2022 May; 136():111054. PubMed ID: 35344827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretch-dependent changes in surface profiles of the human crystalline lens during accommodation: a finite element study.
    Pour HM; Kanapathipillai S; Zarrabi K; Manns F; Ho A
    Clin Exp Optom; 2015 Mar; 98(2):126-37. PubMed ID: 25727940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the lens capsule on the mechanical accommodative response in a lens stretcher.
    Ziebarth NM; Borja D; Arrieta E; Aly M; Manns F; Dortonne I; Nankivil D; Jain R; Parel JM
    Invest Ophthalmol Vis Sci; 2008 Oct; 49(10):4490-6. PubMed ID: 18515568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [fs-Lentotomy: presbyopia reversal by generating gliding planes inside the crystalline lens].
    Lubatschowski H; Schumacher S; Wegener A; Fromm M; Oberheide U; Hoffmann H; Gerten G
    Klin Monbl Augenheilkd; 2009 Dec; 226(12):984-90. PubMed ID: 20108193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paraxial analysis of the depth of field of a pseudophakic eye with accommodating intraocular lens.
    Ale JB; Manns F; Ho A
    Optom Vis Sci; 2011 Jul; 88(7):789-94. PubMed ID: 21516047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical analysis of the accommodative apparatus in primates.
    Ehrmann K; Ho A; Parel JM
    Clin Exp Optom; 2008 May; 91(3):302-12. PubMed ID: 18279413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulating the Mechanics of Lens Accommodation via a Manual Lens Stretcher.
    Webb JN; Dong C; Bernal A; Scarcelli G
    J Vis Exp; 2018 Feb; (132):. PubMed ID: 29553512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accommodating intraocular lenses: a critical review of present and future concepts.
    Menapace R; Findl O; Kriechbaum K; Leydolt-Koeppl Ch
    Graefes Arch Clin Exp Ophthalmol; 2007 Apr; 245(4):473-89. PubMed ID: 16944188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer refilling of presbyopic human lenses in vitro restores the ability to undergo accommodative changes.
    Koopmans SA; Terwee T; Barkhof J; Haitjema HJ; Kooijman AC
    Invest Ophthalmol Vis Sci; 2003 Jan; 44(1):250-7. PubMed ID: 12506082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axial movement of the dual-optic accommodating intraocular lens for the correction of the presbyopia: optical performance and clinical outcomes.
    Tomás-Juan J; Murueta-Goyena Larrañaga A
    J Optom; 2015; 8(2):67-76. PubMed ID: 25248803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anterior lens capsule strains during simulated accommodation in porcine eyes.
    Pellegrino A; Burd HJ; Pinilla Cortés L; D'Antin JC; Petrinic N; Barraquer RI; Michael R
    Exp Eye Res; 2018 Mar; 168():19-27. PubMed ID: 29288023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accommodation of an endocapsular silicone lens (Phaco-Ersatz) in the aging rhesus monkey.
    Haefliger E; Parel JM
    J Refract Corneal Surg; 1994; 10(5):550-5. PubMed ID: 7530105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developments in the correction of presbyopia II: surgical approaches.
    Charman WN
    Ophthalmic Physiol Opt; 2014 Jul; 34(4):397-426. PubMed ID: 24716827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accommodation of the human lens capsule using a finite element model based on nonlinear regionally anisotropic biomembranes.
    David G; Pedrigi RM; Humphrey JD
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):302-307. PubMed ID: 27609339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalised polysiloxanes as injectable, in situ curable accommodating intraocular lenses.
    Hao X; Jeffery JL; Wilkie JS; Meijs GF; Clayton AB; Watling JD; Ho A; Fernandez V; Acosta C; Yamamoto H; Aly MG; Parel JM; Hughes TC
    Biomaterials; 2010 Nov; 31(32):8153-63. PubMed ID: 20692702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic Accommodating Intraocular Lens Using a Valved Deformable Liquid Balloon.
    DeBoer CM; Lee JK; Wheelan BP; Cable C; Shi W; Tai YC; Humayun MS
    IEEE Trans Biomed Eng; 2016 Jun; 63(6):1129-35. PubMed ID: 26441409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-dependence of the optomechanical responses of ex vivo human lenses from India and the USA, and the force required to produce these in a lens stretcher: the similarity to in vivo disaccommodation.
    Augusteyn RC; Mohamed A; Nankivil D; Veerendranath P; Arrieta E; Taneja M; Manns F; Ho A; Parel JM
    Vision Res; 2011 Jul; 51(14):1667-78. PubMed ID: 21658404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive calibration of dynamic accommodation--implications for accommodating intraocular lenses.
    Schor CM; Bharadwaj SR
    J Refract Surg; 2008 Nov; 24(9):984-90. PubMed ID: 19044245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.