BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34685354)

  • 1. Polyethylenimine-Modified
    Niu L; Chen G; Feng Y; Liu X; Pan P; Huang L; Guo Y; Li M
    Polymers (Basel); 2021 Oct; 13(20):. PubMed ID: 34685354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cationized Bombyx mori silk fibroin as a delivery carrier of the VEGF165-Ang-1 coexpression plasmid for dermal tissue regeneration.
    Luo Z; Li J; Qu J; Sheng W; Yang J; Li M
    J Mater Chem B; 2019 Jan; 7(1):80-94. PubMed ID: 32254952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hepatoma Cell-Targeted Cationized Silk Fibroin as a Carrier for the Inhibitor of Growth 4-Interleukin-24 Double Gene Plasmid.
    Luo H; Chen Y; Niu L; Liang A; Yang J; Li M
    J Biomed Nanotechnol; 2019 Jul; 15(7):1622-1635. PubMed ID: 31196364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spermine-modified Antheraea pernyi silk fibroin as a gene delivery carrier.
    Yu Y; Hu Y; Li X; Liu Y; Li M; Yang J; Sheng W
    Int J Nanomedicine; 2016; 11():1013-23. PubMed ID: 27042056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmid containing VEGF-165 and ANG-1 dual genes packaged with fibroin-modified PEI to promote the regeneration of vascular network and dermal tissue.
    Pan P; Li J; Liu X; Hu C; Wang M; Zhang W; Li M; Liu Y
    Colloids Surf B Biointerfaces; 2023 Apr; 224():113210. PubMed ID: 36841206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antheraea pernyi silk fibroin for targeted gene delivery of VEGF165-Ang-1 with PEI.
    Ma C; Lv L; Liu Y; Yu Y; You R; Yang J; Li M
    Biomed Mater; 2014 Jun; 9(3):035015. PubMed ID: 24867887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silk Fibroin-Modified Liposome/Gene Editing System Knocks out the
    Pan P; Liu X; Fang M; Yang S; Zhang Y; Li M; Liu Y
    Pharmaceutics; 2023 Dec; 15(12):. PubMed ID: 38140096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small hydrophobe substitution on polyethylenimine for plasmid DNA delivery: Optimal substitution is critical for effective delivery.
    Thapa B; Plianwong S; Remant Bahadur KC; Rutherford B; Uludağ H
    Acta Biomater; 2016 Mar; 33():213-24. PubMed ID: 26802444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biscarbamate cross-linked polyethylenimine derivative with low molecular weight, low cytotoxicity, and high efficiency for gene delivery.
    Wang YQ; Su J; Wu F; Lu P; Yuan LF; Yuan WE; Sheng J; Jin T
    Int J Nanomedicine; 2012; 7():693-704. PubMed ID: 22359448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted DNA delivery to cancer cells using a biotinylated chitosan carrier.
    Darvishi MH; Nomani A; Hashemzadeh H; Amini M; Shokrgozar MA; Dinarvand R
    Biotechnol Appl Biochem; 2017 May; 64(3):423-432. PubMed ID: 27037851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High mobility group box 1 protein enhances polyethylenimine mediated gene delivery in vitro.
    Shen Y; Peng H; Deng J; Wen Y; Luo X; Pan S; Wu C; Feng M
    Int J Pharm; 2009 Jun; 375(1-2):140-7. PubMed ID: 19442462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cationic
    Qu J; Wang W; Feng Y; Niu L; Li M; Yang J; Xie Y
    Int J Nanomedicine; 2019; 14():9745-9761. PubMed ID: 31849466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyethylenimine-based amphiphilic core-shell nanoparticles: study of gene delivery and intracellular trafficking.
    Siu YS; Li L; Leung MF; Lee KL; Li P
    Biointerphases; 2012 Dec; 7(1-4):16. PubMed ID: 22589059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyethylenimine-associated cerium oxide nanoparticles: A novel promising gene delivery vector.
    Hasanzadeh L; Darroudi M; Ramezanian N; Zamani P; Aghaee-Bakhtiari SH; Nourmohammadi E; Kazemi Oskuee R
    Life Sci; 2019 Sep; 232():116661. PubMed ID: 31323272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyethylenimine-polyacrylic acid nanocomposites: Type of bonding does influence the gene transfer efficacy and cytotoxicity.
    Tripathi SK; Ahmadi Z; Gupta KC; Kumar P
    Colloids Surf B Biointerfaces; 2016 Apr; 140():117-120. PubMed ID: 26745638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of gene transfection by silicon nanowire arrays modified with polyethylenimine.
    Pan J; Lyu Z; Jiang W; Wang H; Liu Q; Tan M; Yuan L; Chen H
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14391-8. PubMed ID: 25032791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lower-Molecular-Weight Chitosan-Treated Polyethyleneimine: a Practical Strategy For Gene Delivery to Mesenchymal Stem Cells.
    Liu M; Zhang L; Zhao Q; Jiang X; Wu L; Hu Y
    Cell Physiol Biochem; 2018; 50(4):1255-1269. PubMed ID: 30355922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cleavable poly(ethylene glycol) branched chain-modified
    Liu X; Luo H; Niu L; Feng Y; Pan P; Yang J; Li M
    Nanomedicine (Lond); 2021 Apr; 16(10):839-853. PubMed ID: 33890489
    [No Abstract]   [Full Text] [Related]  

  • 19. Characterization of lactoferrin as a targeting ligand for nonviral gene delivery to airway epithelial cells.
    Elfinger M; Maucksch C; Rudolph C
    Biomaterials; 2007 Aug; 28(23):3448-55. PubMed ID: 17475321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational design, fabrication, characterization and in vitro testing of biodegradable microparticles that generate targeted and sustained transgene expression in HepG2 liver cells.
    Intra J; Salem AK
    J Drug Target; 2011 Jul; 19(6):393-408. PubMed ID: 20681752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.