These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 34685392)

  • 1. Compendium of Plant-Specific CRISPR Vectors and Their Technical Advantages.
    Alok A; Chauhan H; Upadhyay SK; Pandey A; Kumar J; Singh K
    Life (Basel); 2021 Sep; 11(10):. PubMed ID: 34685392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a gRNA Expression and Processing Platform for Efficient CRISPR-Cas9-Based Gene Editing and Gene Silencing in Candida tropicalis.
    Li Y; Zhang L; Yang H; Xia Y; Liu L; Chen X; Shen W
    Microbiol Spectr; 2022 Jun; 10(3):e0005922. PubMed ID: 35543560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 5. FLASH Genome Editing Pipeline: An Efficient and High-Throughput Method to Construct Arrayed CRISPR Library for Plant Functional Genomics.
    Yao L; Wang X; Ke R; Chen K; Xie K
    Curr Protoc; 2023 Sep; 3(9):e905. PubMed ID: 37755326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/dCas9-Mediated Gene Silencing in Two Plant Fungal Pathogens.
    Zhang YM; Zheng L; Xie K
    mSphere; 2023 Feb; 8(1):e0059422. PubMed ID: 36655998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas genome editing in plants: Dawn of Agrobacterium transformation for recalcitrant and transgene-free plants for future crop breeding.
    Antony Ceasar S; Ignacimuthu S
    Plant Physiol Biochem; 2023 Mar; 196():724-730. PubMed ID: 36812799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a Highly Efficient Multiplex Genome Editing System in Outcrossing Tetraploid Alfalfa (
    Wolabu TW; Cong L; Park JJ; Bao Q; Chen M; Sun J; Xu B; Ge Y; Chai M; Liu Z; Wang ZY
    Front Plant Sci; 2020; 11():1063. PubMed ID: 32765553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice.
    Toda E; Koiso N; Takebayashi A; Ichikawa M; Kiba T; Osakabe K; Osakabe Y; Sakakibara H; Kato N; Okamoto T
    Nat Plants; 2019 Apr; 5(4):363-368. PubMed ID: 30911123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular and Computational Strategies to Increase the Efficiency of CRISPR-Based Techniques.
    Mattiello L; Rütgers M; Sua-Rojas MF; Tavares R; Soares JS; Begcy K; Menossi M
    Front Plant Sci; 2022; 13():868027. PubMed ID: 35712599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combination of Hairy Root and Whole-Plant Transformation Protocols to Achieve Efficient CRISPR/Cas9 Genome Editing in Soybean.
    Kong Q; Li J; Wang S; Feng X; Shou H
    Plants (Basel); 2023 Feb; 12(5):. PubMed ID: 36903878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Intein-Mediated Split-nCas9 System for Base Editing in Plants.
    Yuan G; Lu H; De K; Hassan MM; Liu Y; Li Y; Muchero W; Abraham PE; Tuskan GA; Yang X
    ACS Synth Biol; 2022 Jul; 11(7):2513-2517. PubMed ID: 35767601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Targeted Mutagenesis Mediated by CRISPR-Cas12a Ribonucleoprotein Complexes in Maize.
    Dong S; Qin YL; Vakulskas CA; Collingwood MA; Marand M; Rigoulot S; Zhu L; Jiang Y; Gu W; Fan C; Mangum A; Chen Z; Yarnall M; Zhong H; Elumalai S; Shi L; Que Q
    Front Genome Ed; 2021; 3():670529. PubMed ID: 34713259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Having a Same Type IIS Enzyme's Restriction Site on Guide RNA Sequence Does Not Affect Golden Gate (GG) Cloning and Subsequent CRISPR/Cas Mutagenesis.
    Moniruzzaman M; Zhong Y; Huang Z; Zhong G
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construct design for CRISPR/Cas-based genome editing in plants.
    Hassan MM; Zhang Y; Yuan G; De K; Chen JG; Muchero W; Tuskan GA; Qi Y; Yang X
    Trends Plant Sci; 2021 Nov; 26(11):1133-1152. PubMed ID: 34340931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hairy CRISPR: Genome Editing in Plants Using Hairy Root Transformation.
    Kiryushkin AS; Ilina EL; Guseva ED; Pawlowski K; Demchenko KN
    Plants (Basel); 2021 Dec; 11(1):. PubMed ID: 35009056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-guided genome editing in plants using a CRISPR-Cas system.
    Xie K; Yang Y
    Mol Plant; 2013 Nov; 6(6):1975-83. PubMed ID: 23956122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient expression of multiple guide RNAs for CRISPR/Cas genome editing.
    Hsieh-Feng V; Yang Y
    aBIOTECH; 2020 Apr; 1(2):123-134. PubMed ID: 36304720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila.
    Port F; Chen HM; Lee T; Bullock SL
    Proc Natl Acad Sci U S A; 2014 Jul; 111(29):E2967-76. PubMed ID: 25002478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.