BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 34685575)

  • 21. How does JAK2V617F contribute to the pathogenesis of myeloproliferative neoplasms?
    Chen E; Mullally A
    Hematology Am Soc Hematol Educ Program; 2014 Dec; 2014(1):268-76. PubMed ID: 25696866
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Myeloid Malignancies: Recognizing the Risk of Germline Predisposition and Supporting Patients and Families.
    Friend P; Mahon SM
    Clin J Oncol Nurs; 2021 Oct; 25(5):519-522. PubMed ID: 34533515
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of the JAK2 GGCC haplotype and the TET2 gene in familial myeloproliferative neoplasms.
    Olcaydu D; Rumi E; Harutyunyan A; Passamonti F; Pietra D; Pascutto C; Berg T; Jäger R; Hammond E; Cazzola M; Kralovics R
    Haematologica; 2011 Mar; 96(3):367-74. PubMed ID: 21173100
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Myeloid neoplasms with germline predisposition: Practical considerations and complications in the search for new susceptibility loci.
    Carraway HE; LaFramboise T
    Best Pract Res Clin Haematol; 2020 Sep; 33(3):101191. PubMed ID: 33038980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic Vulnerabilities and Epigenetic Dysregulation in Myeloproliferative Neoplasms.
    Sharma V; Wright KL; Epling-Burnette PK; Reuther GW
    Front Immunol; 2020; 11():604142. PubMed ID: 33329600
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent insights regarding the molecular basis of myeloproliferative neoplasms.
    Jang MA; Choi CW
    Korean J Intern Med; 2020 Jan; 35(1):1-11. PubMed ID: 31778606
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Focus on the epigenome in the myeloproliferative neoplasms.
    Kim E; Abdel-Wahab O
    Hematology Am Soc Hematol Educ Program; 2013; 2013():538-44. PubMed ID: 24319229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Current clinical strategies and emergent treatment landscapes in leukemic transformation of Philadelphia-negative myeloproliferative neoplasms.
    Abruzzese E; Niscola P
    Expert Rev Hematol; 2020 Dec; 13(12):1349-1359. PubMed ID: 33226274
    [No Abstract]   [Full Text] [Related]  

  • 29. Applied genomics in MPN presentation.
    Moliterno AR; Kaizer H
    Hematology Am Soc Hematol Educ Program; 2020 Dec; 2020(1):434-439. PubMed ID: 33275725
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clinical Exome Sequencing unravels new disease-causing mutations in the myeloproliferative neoplasms: A pilot study in patients from the state of Qatar.
    Al-Dewik N; Ben-Omran T; Zayed H; Trujillano D; Kishore S; Rolfs A; Yassin MA
    Gene; 2019 Mar; 689():34-42. PubMed ID: 30553997
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TERT and JAK2 polymorphisms define genetic predisposition to myeloproliferative neoplasms in Japanese patients.
    Matsuguma M; Yujiri T; Yamamoto K; Kajimura Y; Tokunaga Y; Tanaka M; Tanaka Y; Nakamura Y; Tanizawa Y
    Int J Hematol; 2019 Dec; 110(6):690-698. PubMed ID: 31571131
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular basis and clonal evolution of myeloproliferative neoplasms.
    Cleary C; Kralovics R
    Clin Chem Lab Med; 2013 Oct; 51(10):1889-96. PubMed ID: 23729579
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MicroRNAs in myeloproliferative neoplasms.
    Zhan H; Cardozo C; Raza A
    Br J Haematol; 2013 May; 161(4):471-83. PubMed ID: 23432162
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling myeloproliferative neoplasms: From mutations to mouse models and back again.
    Morotti A; Rocca S; Carrà G; Saglio G; Brancaccio M
    Blood Rev; 2017 May; 31(3):139-150. PubMed ID: 27899218
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thrombosis in myeloproliferative neoplasms with JAK2V617F mutation.
    Sun T; Zhang L
    Clin Appl Thromb Hemost; 2013; 19(4):374-81. PubMed ID: 22826442
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genomic analysis of clonal eosinophils by CGH arrays reveals new genetic regions involved in chronic eosinophilia.
    Arefi M; Robledo C; Peñarrubia MJ; García de Coca A; Cordero M; Hernández-Rivas JM; García JL
    Eur J Haematol; 2014 Nov; 93(5):422-8. PubMed ID: 24813417
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic polymorphisms associated with telomere length and risk of developing myeloproliferative neoplasms.
    Giaccherini M; Macauda A; Sgherza N; Sainz J; Gemignani F; Maldonado JMS; Jurado M; Tavano F; Mazur G; Jerez A; Góra-Tybor J; Gołos A; Mohedo FH; Lopez JM; Várkonyi J; Spadano R; Butrym A; Canzian F; Campa D
    Blood Cancer J; 2020 Sep; 10(8):89. PubMed ID: 32873778
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Do myeloproliferative neoplasms and multiple myeloma share the same genetic susceptibility loci?
    Macauda A; Giaccherini M; Sainz J; Gemignani F; Sgherza N; Sánchez-Maldonado JM; Gora-Tybor J; Martinez-Lopez J; Carreño-Tarragona G; Jerez A; Spadano R; Gołos A; Jurado M; Hernández-Mohedo F; Mazur G; Tavano F; Butrym A; Várkonyi J; Canzian F; Campa D
    Int J Cancer; 2021 Apr; 148(7):1616-1624. PubMed ID: 33038278
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heterogeneity in myeloproliferative neoplasms: Causes and consequences.
    O'Sullivan J; Mead AJ
    Adv Biol Regul; 2019 Jan; 71():55-68. PubMed ID: 30528537
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Germline
    Braunstein EM; Chen H; Juarez F; Yang F; Tao L; Makhlin I; Williams DM; Chaturvedi S; Pallavajjala A; Karantanos T; Martin R; Wohler E; Sobreira N; Gocke CD; Moliterno AR
    Cancers (Basel); 2021 Jun; 13(13):. PubMed ID: 34209587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.