BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 34685688)

  • 1. Magnetic Guiding with Permanent Magnets: Concept, Realization and Applications to Nanoparticles and Cells.
    Blümler P
    Cells; 2021 Oct; 10(10):. PubMed ID: 34685688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contactless Nanoparticle-Based Guiding of Cells by Controllable Magnetic Fields.
    Blümler P; Friedrich RP; Pereira J; Baun O; Alexiou C; Mailänder V
    Nanotechnol Sci Appl; 2021; 14():91-100. PubMed ID: 33854305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic field homogeneity perturbations in finite Halbach dipole magnets.
    Turek K; Liszkowski P
    J Magn Reson; 2014 Jan; 238():52-62. PubMed ID: 24316186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive approach to characterize navigation instruments for magnetic guidance in biological systems.
    Blümler P; Raudzus F; Schmid F
    Sci Rep; 2024 Apr; 14(1):7879. PubMed ID: 38570608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical foundation for designing multilayer Halbach array magnets for benchtop NMR and MRI.
    Yu P; Wang Y; Xu Y; Wu Z; Zhao Y; Peng B; Wang F; Tang Y; Yang X
    J Magn Reson; 2022 Nov; 344():107322. PubMed ID: 36332512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal Halbach Permanent Magnet Designs for Maximally Pulling and Pushing Nanoparticles.
    Sarwar A; Nemirovski A; Shapiro B
    J Magn Magn Mater; 2012 Mar; 324(5):742-754. PubMed ID: 23335834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Approach to Accumulate Superparamagnetic Particles in Aqueous Environment Using Time-Varying Magnetic Field.
    Liu YL; Chen JJ; Ahmad F; Zhang TD; Guo WH; Ye YJ; Shang P; Yin DC
    IEEE Trans Biomed Eng; 2020 Jun; 67(6):1558-1564. PubMed ID: 31502959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial Manipulation of Particles and Cells at Micro- and Nanoscale via Magnetic Forces.
    Panina LV; Gurevich A; Beklemisheva A; Omelyanchik A; Levada K; Rodionova V
    Cells; 2022 Mar; 11(6):. PubMed ID: 35326401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MPI System with Bore Sizes of 75 mm and 100 mm Using Permanent Magnets and FMMD Technique.
    Jeong JC; Kim TY; Cho HS; Seo BS; Krause HJ; Hong HB
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmable Ultralight Magnets via Orientational Arrangement of Ferromagnetic Nanoparticles within Aerogel Hosts.
    Li Y; Liu Q; Hess AJ; Mi S; Liu X; Chen Z; Xie Y; Smalyukh II
    ACS Nano; 2019 Dec; 13(12):13875-13883. PubMed ID: 31790585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FEM based simulation of magnetic drug targeting in a multibranched vessel model.
    Lindemann MC; Luttke T; Nottrodt N; Schmitz-Rode T; Slabu I
    Comput Methods Programs Biomed; 2021 Oct; 210():106354. PubMed ID: 34464768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A concept for a magnetic particle imaging scanner with Halbach arrays.
    Bakenecker AC; Schumacher J; Blümler P; Gräfe K; Ahlborg M; M Buzug T
    Phys Med Biol; 2020 Sep; 65(19):195014. PubMed ID: 32155606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Construction of a Chamber Enabling the Observation of Living Cells in the Field of a Constant Magnetic Force.
    Dziob D; Ramian J; Ramian J; Lisowski B; Laska J
    Cells; 2021 Nov; 10(12):. PubMed ID: 34943846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and experimental validation of Unilateral Linear Halbach magnet arrays for single-sided magnetic resonance.
    Bashyam A; Li M; Cima MJ
    J Magn Reson; 2018 Jul; 292():36-43. PubMed ID: 29763794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mind Over Magnets - How Magnetic Particle Imaging is Changing the Way We Think About the Future of Neuroscience.
    Makela AV; Gaudet JM; Murrell DH; Mansfield JR; Wintermark M; Contag CH
    Neuroscience; 2021 Oct; 474():100-109. PubMed ID: 33197498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MagTetris: A simulator for fast magnetic field and force calculation for permanent magnet array designs.
    Liang TO; Koh YH; Qiu T; Li E; Yu W; Huang SY
    J Magn Reson; 2023 Jul; 352():107463. PubMed ID: 37207466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Assembled Permanent Micro-Magnets in a Polymer-Based Microfluidic Device for Magnetic Cell Sorting.
    Descamps L; Audry MC; Howard J; Mekkaoui S; Albin C; Barthelemy D; Payen L; Garcia J; Laurenceau E; Le Roy D; Deman AL
    Cells; 2021 Jul; 10(7):. PubMed ID: 34359904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic Forces by Permanent Magnets to Manipulate Magnetoresponsive Particles in Drug-Targeting Applications.
    Bernad SI; Bernad E
    Micromachines (Basel); 2022 Oct; 13(11):. PubMed ID: 36363839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic Trapping of Bacteria at Low Magnetic Fields.
    Wang ZM; Wu RG; Wang ZP; Ramanujan RV
    Sci Rep; 2016 Jun; 6():26945. PubMed ID: 27254771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved magnetic drug targeting with maximized magnetic forces and limited particle spreading.
    Van Durme R; Crevecoeur G; Dupré L; Coene A
    Med Phys; 2023 Mar; 50(3):1715-1727. PubMed ID: 36542430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.