These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 34685688)

  • 21. Nanoparticle encapsulation in red blood cells enables blood-pool magnetic particle imaging hours after injection.
    Rahmer J; Antonelli A; Sfara C; Tiemann B; Gleich B; Magnani M; Weizenecker J; Borgert J
    Phys Med Biol; 2013 Jun; 58(12):3965-77. PubMed ID: 23685712
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Size-dependent ferrohydrodynamic relaxometry of magnetic particle imaging tracers in different environments.
    Arami H; Ferguson RM; Khandhar AP; Krishnan KM
    Med Phys; 2013 Jul; 40(7):071904. PubMed ID: 23822441
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational predictions of enhanced magnetic particle imaging performance by magnetic nanoparticle chains.
    Zhao Z; Rinaldi C
    Phys Med Biol; 2020 Sep; 65(18):185013. PubMed ID: 32442999
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A portable Halbach magnet that can be opened and closed without force: the NMR-CUFF.
    Windt CW; Soltner H; van Dusschoten D; Blümler P
    J Magn Reson; 2011 Jan; 208(1):27-33. PubMed ID: 21036637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toward improved selectivity of targeted delivery: the potential of magnetic nanoparticles.
    Yoo JW
    Arch Pharm Res; 2012 Jan; 35(1):1-2. PubMed ID: 22297736
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding the dynamics of superparamagnetic particles under the influence of high field gradient arrays.
    Barnsley LC; Carugo D; Aron M; Stride E
    Phys Med Biol; 2017 Mar; 62(6):2333-2360. PubMed ID: 28141578
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamics of magnetic particles in cylindrical Halbach array: implications for magnetic cell separation and drug targeting.
    Babinec P; Krafcík A; Babincová M; Rosenecker J
    Med Biol Eng Comput; 2010 Aug; 48(8):745-53. PubMed ID: 20517710
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Remote manipulation of posterior lamellar corneal grafts using a magnetic field.
    Nahum Y; Barliya T; Bahar I; Livnat T; Nisgav Y; Weinberger D
    Cornea; 2013 Jun; 32(6):851-4. PubMed ID: 23538632
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D-Spatial encoding with permanent magnets for ultra-low field magnetic resonance imaging.
    Vogel MW; Guridi RP; Su J; Vegh V; Reutens DC
    Sci Rep; 2019 Feb; 9(1):1522. PubMed ID: 30728414
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A review of magnet systems for targeted drug delivery.
    Liu YL; Chen D; Shang P; Yin DC
    J Control Release; 2019 May; 302():90-104. PubMed ID: 30946854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of displacement forces and image artifacts in the presence of passive medical implants in low-field (<100 mT) permanent magnet-based MRI systems, and comparisons with clinical MRI systems.
    Van Speybroeck CDE; O'Reilly T; Teeuwisse W; Arnold PM; Webb AG
    Phys Med; 2021 Apr; 84():116-124. PubMed ID: 33894581
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Life on magnets: stem cell networking on micro-magnet arrays.
    Zablotskii V; Dejneka A; Kubinová Š; Le-Roy D; Dumas-Bouchiat F; Givord D; Dempsey NM; Syková E
    PLoS One; 2013; 8(8):e70416. PubMed ID: 23936425
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Magnetic guidewire steering at ultrahigh magnetic fields.
    Tiryaki ME; Elmacıoğlu YG; Sitti M
    Sci Adv; 2023 Apr; 9(17):eadg6438. PubMed ID: 37126547
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic implants in vivo guiding sorafenib liver delivery by superparamagnetic solid lipid nanoparticles.
    Iacobazzi RM; Vischio F; Arduino I; Canepa F; Laquintana V; Notarnicola M; Scavo MP; Bianco G; Fanizza E; Lopedota AA; Cutrignelli A; Lopalco A; Azzariti A; Curri ML; Franco M; Giannelli G; Lee BC; Depalo N; Denora N
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):239-254. PubMed ID: 34626971
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High homogeneity permanent magnet for diamond magnetometry.
    Wickenbrock A; Zheng H; Chatzidrosos G; Shaji Rebeirro J; Schneemann T; Blümler P
    J Magn Reson; 2021 Jan; 322():106867. PubMed ID: 33423759
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of Oppositely Polarized External Magnets To Improve the Accumulation and Penetration of Magnetic Nanocarriers into Solid Tumors.
    Liu JF; Lan Z; Ferrari C; Stein JM; Higbee-Dempsey E; Yan L; Amirshaghaghi A; Cheng Z; Issadore D; Tsourkas A
    ACS Nano; 2020 Jan; 14(1):142-152. PubMed ID: 31854966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet.
    Zhou Y; Kumar DT; Lu X; Kale A; DuBose J; Song Y; Wang J; Li D; Xuan X
    Biomicrofluidics; 2015 Jul; 9(4):044102. PubMed ID: 26221197
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Variable magnet arrays to passively shim compact permanent-yoke magnets.
    Überrück T; Blümich B
    J Magn Reson; 2019 Jan; 298():77-84. PubMed ID: 30529894
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Planar Steering of a Single Ferrofluid Drop by Optimal Minimum Power Dynamic Feedback Control of Four Electromagnets at a Distance.
    Probst R; Lin J; Komaee A; Nacev A; Cummins Z; Shapiro B
    J Magn Magn Mater; 2011 Apr; 323(7):885-896. PubMed ID: 21218157
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Frequency Mixing Magnetic Detection Setup Employing Permanent Ring Magnets as a Static Offset Field Source.
    Pourshahidi AM; Achtsnicht S; Offenhäusser A; Krause HJ
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.