BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

436 related articles for article (PubMed ID: 34685863)

  • 1. CRISPR/dCas9-Based Systems: Mechanisms and Applications in Plant Sciences.
    Karlson CKS; Mohd-Noor SN; Nolte N; Tan BC
    Plants (Basel); 2021 Sep; 10(10):. PubMed ID: 34685863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective Blocking of Microbial Transcriptional Initiation by dCas9-NG-Mediated CRISPR Interference.
    Kim B; Kim HJ; Lee SJ
    J Microbiol Biotechnol; 2020 Dec; 30(12):1919-1926. PubMed ID: 32958732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted Modulation of Chicken Genes In Vitro Using CRISPRa and CRISPRi Toolkit.
    Chapman B; Han JH; Lee HJ; Ruud I; Kim TH
    Genes (Basel); 2023 Apr; 14(4):. PubMed ID: 37107664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR interference and its applications.
    Ghavami S; Pandi A
    Prog Mol Biol Transl Sci; 2021; 180():123-140. PubMed ID: 33934834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/dCas9-Mediated Gene Silencing in Two Plant Fungal Pathogens.
    Zhang YM; Zheng L; Xie K
    mSphere; 2023 Feb; 8(1):e0059422. PubMed ID: 36655998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/dCas9 platforms in plants: strategies and applications beyond genome editing.
    Moradpour M; Abdulah SNA
    Plant Biotechnol J; 2020 Jan; 18(1):32-44. PubMed ID: 31392820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new method for the robust expression and single-step purification of dCas9 for CRISPR interference/activation (CRISPRi/a) applications.
    Pandey H; Yadav B; Shah K; Kaur R; Choudhary D; Sharma N; Rishi V
    Protein Expr Purif; 2024 May; 220():106500. PubMed ID: 38718989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Progress and Future Prospect of CRISPR/Cas-Derived Transcription Activation (CRISPRa) System in Plants.
    Ding X; Yu L; Chen L; Li Y; Zhang J; Sheng H; Ren Z; Li Y; Yu X; Jin S; Cao J
    Cells; 2022 Sep; 11(19):. PubMed ID: 36231007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors.
    Piatek A; Ali Z; Baazim H; Li L; Abulfaraj A; Al-Shareef S; Aouida M; Mahfouz MM
    Plant Biotechnol J; 2015 May; 13(4):578-89. PubMed ID: 25400128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional repression of endogenous genes in BmE cells using CRISPRi system.
    Wang X; Ma S; Liu Y; Lu W; Sun L; Zhao P; Xia Q
    Insect Biochem Mol Biol; 2019 Aug; 111():103172. PubMed ID: 31103783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Development of CRISPR technology and its application in bone and cartilage tissue engineering].
    Chen G; Cheng D; Chen B
    Nan Fang Yi Ke Da Xue Xue Bao; 2019 Dec; 39(12):1515-1520. PubMed ID: 31907146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repurposing CRISPR System for Transcriptional Activation.
    Chen M; Qi LS
    Adv Exp Med Biol; 2017; 983():147-157. PubMed ID: 28639197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR technologies for stem cell engineering and regenerative medicine.
    Hsu MN; Chang YH; Truong VA; Lai PL; Nguyen TKN; Hu YC
    Biotechnol Adv; 2019 Dec; 37(8):107447. PubMed ID: 31513841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3Bs of CRISPR-Cas mediated genome editing in plants: exploring the basics, bioinformatics and biosafety landscape.
    Kharbikar L; Konwarh R; Chakraborty M; Nandanwar S; Marathe A; Yele Y; Ghosh PK; Sanan-Mishra N; Singh AP
    Physiol Mol Biol Plants; 2023 Dec; 29(12):1825-1850. PubMed ID: 38222286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9.
    Wang Y; Zhang ZT; Seo SO; Lynn P; Lu T; Jin YS; Blaschek HP
    Biotechnol Bioeng; 2016 Dec; 113(12):2739-2743. PubMed ID: 27240718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Cas9 based plant genome editing: Significance, opportunities and recent advances.
    Soda N; Verma L; Giri J
    Plant Physiol Biochem; 2018 Oct; 131():2-11. PubMed ID: 29103811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of Microbial Metabolic Rates Using CRISPR Interference With Expanded PAM Sequences.
    Kim B; Kim HJ; Lee SJ
    Front Microbiol; 2020; 11():282. PubMed ID: 32184769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multiplexed gRNA piggyBac transposon system facilitates efficient induction of CRISPRi and CRISPRa in human pluripotent stem cells.
    Hazelbaker DZ; Beccard A; Angelini G; Mazzucato P; Messana A; Lam D; Eggan K; Barrett LE
    Sci Rep; 2020 Jan; 10(1):635. PubMed ID: 31959800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Cas9 for medical genetic screens: applications and future perspectives.
    Xue HY; Ji LJ; Gao AM; Liu P; He JD; Lu XJ
    J Med Genet; 2016 Feb; 53(2):91-7. PubMed ID: 26673779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanding the Scope of Bacterial CRISPR Activation with PAM-Flexible dCas9 Variants.
    Kiattisewee C; Karanjia AV; Legut M; Daniloski Z; Koplik SE; Nelson J; Kleinstiver BP; Sanjana NE; Carothers JM; Zalatan JG
    ACS Synth Biol; 2022 Dec; 11(12):4103-4112. PubMed ID: 36378874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.