BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 34685863)

  • 21. Reversible Gene Expression Control in Yersinia pestis by Using an Optimized CRISPR Interference System.
    Wang T; Wang M; Zhang Q; Cao S; Li X; Qi Z; Tan Y; You Y; Bi Y; Song Y; Yang R; Du Z
    Appl Environ Microbiol; 2019 Jun; 85(12):. PubMed ID: 30979834
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The evaluation of active transcriptional repressor domain for CRISPRi in plants.
    Xu L; Sun B; Liu S; Gao X; Zhou H; Li F; Li Y
    Gene; 2023 Jan; 851():146967. PubMed ID: 36261092
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR-assisted transcription activation by phase-separation proteins.
    Liu J; Chen Y; Nong B; Luo X; Cui K; Li Z; Zhang P; Tan W; Yang Y; Ma W; Liang P; Songyang Z
    Protein Cell; 2023 Dec; 14(12):874-887. PubMed ID: 36905356
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Programmable activation of Bombyx gene expression using CRISPR/dCas9 fusion systems.
    Wang XG; Ma SY; Chang JS; Shi R; Wang RL; Zhao P; Xia QY
    Insect Sci; 2019 Dec; 26(6):983-990. PubMed ID: 30088341
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gene Silencing Through CRISPR Interference in Bacteria: Current Advances and Future Prospects.
    Zhang R; Xu W; Shao S; Wang Q
    Front Microbiol; 2021; 12():635227. PubMed ID: 33868193
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR FokI Dead Cas9 System: Principles and Applications in Genome Engineering.
    Saifaldeen M; Al-Ansari DE; Ramotar D; Aouida M
    Cells; 2020 Nov; 9(11):. PubMed ID: 33233344
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR Technology for Genome Activation and Repression in Mammalian Cells.
    Du D; Qi LS
    Cold Spring Harb Protoc; 2016 Jan; 2016(1):pdb.prot090175. PubMed ID: 26729910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Cre-Dependent CRISPR/dCas9 System for Gene Expression Regulation in Neurons.
    Carullo NVN; Hinds JE; Revanna JS; Tuscher JJ; Bauman AJ; Day JJ
    eNeuro; 2021; 8(4):. PubMed ID: 34321217
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Robust CRISPR Interference Gene Repression System in Pseudomonas.
    Tan SZ; Reisch CR; Prather KLJ
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29311279
    [No Abstract]   [Full Text] [Related]  

  • 31. A CRISPRi-dCas9 System for Archaea and Its Use To Examine Gene Function during Nitrogen Fixation by Methanosarcina acetivorans.
    Dhamad AE; Lessner DJ
    Appl Environ Microbiol; 2020 Oct; 86(21):. PubMed ID: 32826220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Applications of the CRISPR/Cas system beyond gene editing.
    Anton T; Karg E; Bultmann S
    Biol Methods Protoc; 2018; 3(1):bpy002. PubMed ID: 32161796
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulating Gene Expression in Epstein-Barr Virus (EBV)-Positive B Cell Lines with CRISPRa and CRISPRi.
    Wang LW; Trudeau SJ; Wang C; Gerdt C; Jiang S; Zhao B; Gewurz BE
    Curr Protoc Mol Biol; 2018 Jan; 121():31.13.1-31.13.18. PubMed ID: 29337370
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Incorporation of a Synthetic Amino Acid into dCas9 Improves Control of Gene Silencing.
    Koopal B; Kruis AJ; Claassens NJ; Nobrega FL; van der Oost J
    ACS Synth Biol; 2019 Feb; 8(2):216-222. PubMed ID: 30668910
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Localized delivery of CRISPR/dCas9 via layer-by-layer self-assembling peptide coating on nanofibers for neural tissue engineering.
    Zhang K; Chooi WH; Liu S; Chin JS; Murray A; Nizetic D; Cheng D; Chew SY
    Biomaterials; 2020 Oct; 256():120225. PubMed ID: 32738650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Current status of potential applications of repurposed Cas9 for structural and functional genomics of plants.
    Seth K; Harish
    Biochem Biophys Res Commun; 2016 Nov; 480(4):499-507. PubMed ID: 27955725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR/dCas9 Tools: Epigenetic Mechanism and Application in Gene Transcriptional Regulation.
    Cai R; Lv R; Shi X; Yang G; Jin J
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834313
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent Advances in Genome Editing Using CRISPR/Cas9.
    Ding Y; Li H; Chen LL; Xie K
    Front Plant Sci; 2016; 7():703. PubMed ID: 27252719
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inducible CRISPR-dCas9 Transcriptional Systems for Sensing and Genome Regulation.
    Wu H; Wang F; Jiang JH
    Chembiochem; 2021 Jun; 22(11):1894-1900. PubMed ID: 33433941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Implementation of dCas9-mediated CRISPRi in the fission yeast Schizosaccharomyces pombe.
    Ishikawa K; Soejima S; Masuda F; Saitoh S
    G3 (Bethesda); 2021 Apr; 11(4):. PubMed ID: 33617628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.