These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34685868)

  • 1. Mixtures of Biological Control Agents and Organic Additives Improve Physiological Behavior in Cape Gooseberry Plants under Vascular Wilt Disease.
    Chaves-Gómez JL; Chávez-Arias CC; Prado AMC; Gómez-Caro S; Restrepo-Díaz H
    Plants (Basel); 2021 Sep; 10(10):. PubMed ID: 34685868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological Response of Cape Gooseberry Seedlings to Three Biological Control Agents Under
    Chaves-Gómez JL; Chavez-Arias CC; Cotes Prado AM; Gómez-Caro S; Restrepo-Díaz H
    Plant Dis; 2020 Feb; 104(2):388-397. PubMed ID: 31809256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological Response of Cape Gooseberry Plants to
    Mendoza-Vargas LA; Villamarín-Romero WP; Cotrino-Tierradentro AS; Ramírez-Gil JG; Chávez-Arias CC; Restrepo-Díaz H; Gómez-Caro S
    Front Plant Sci; 2021; 12():702842. PubMed ID: 34421951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trichoderma virens Gl006 and Bacillus velezensis Bs006: a compatible interaction controlling Fusarium wilt of cape gooseberry.
    Izquierdo-García LF; González-Almario A; Cotes AM; Moreno-Velandia CA
    Sci Rep; 2020 Apr; 10(1):6857. PubMed ID: 32321998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Putative Novel Effector Genes Revealed by the Genomic Analysis of the Phytopathogenic Fungus
    Simbaqueba J; Rodríguez EA; Burbano-David D; González C; Caro-Quintero A
    Front Microbiol; 2020; 11():593915. PubMed ID: 33537009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological Responses to the Foliar Application of Synthetic Resistance Elicitors in Cape Gooseberry Seedlings Infected with
    Chávez-Arias CC; Gómez-Caro S; Restrepo-Díaz H
    Plants (Basel); 2020 Feb; 9(2):. PubMed ID: 32024161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Fengycins and Iturins on
    Moreno-Velandia CA; Ongena M; Cotes AM
    Phytopathology; 2021 Dec; 111(12):2227-2237. PubMed ID: 34032523
    [No Abstract]   [Full Text] [Related]  

  • 8. Screening of Different
    Cháves-Gómez JL; Becerra-Mutis LM; Chávez-Arias CC; Restrepo-Díaz H; Gómez-Caro S
    Front Plant Sci; 2020; 11():806. PubMed ID: 32655597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling Fusarium wilt of cape gooseberry by microbial consortia.
    García D; González-Almario A; Cotes AM
    Lett Appl Microbiol; 2023 Jul; 76(7):. PubMed ID: 37348479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for horizontal gene transfer and separation of effector recognition from effector function revealed by analysis of effector genes shared between cape gooseberry- and tomato-infecting formae speciales of Fusarium oxysporum.
    Simbaqueba J; Catanzariti AM; González C; Jones DA
    Mol Plant Pathol; 2018 Oct; 19(10):2302-2318. PubMed ID: 29786161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studying the microbiome of suppressive soils against vascular wilt, caused by Fusarium oxysporum in cape gooseberry (Physalis peruviana).
    Bautista D; García D; Dávila L; Caro-Quintero A; Cotes AM; González A; Zuluaga AP
    Environ Microbiol Rep; 2023 Dec; 15(6):757-768. PubMed ID: 37675926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of
    Brizuela AM; Gálvez L; Arroyo JM; Sánchez S; Palmero D
    Plants (Basel); 2023 Aug; 12(15):. PubMed ID: 37571000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Embedding Bacillus velezensis NH-1 in Microcapsules for Biocontrol of Cucumber
    Luo W; Liu L; Qi G; Yang F; Shi X; Zhao X
    Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First Report of Fusarium wilt disease on Watermelon Caused by Fusarium oxysporum f. sp. niveum (FON) in Malaysia.
    Rahman MZ; Ahmad K; Siddiqui Y; Saad N; Hun TG; Mohd Hata E; Rashed O; Hossain MI; Kutawa AB
    Plant Dis; 2021 May; ():. PubMed ID: 34042494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association analysis for disease resistance to Fusarium oxysporum in cape gooseberry (Physalis peruviana L).
    Osorio-Guarín JA; Enciso-Rodríguez FE; González C; Fernández-Pozo N; Mueller LA; Barrero LS
    BMC Genomics; 2016 Mar; 17():248. PubMed ID: 26988219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First Report of Fusarium Wilt Caused by Fusarium oxysporum f. sp. passiflorae on Passion Fruit in North America.
    Rooney-Latham S; Blomquist CL; Scheck HJ
    Plant Dis; 2011 Nov; 95(11):1478. PubMed ID: 30731749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological Management of Banana Fusarium Wilt Caused by
    Damodaran T; Rajan S; Muthukumar M; Ram Gopal ; Yadav K; Kumar S; Ahmad I; Kumari N; Mishra VK; Jha SK
    Front Microbiol; 2020; 11():595845. PubMed ID: 33391212
    [No Abstract]   [Full Text] [Related]  

  • 18. Influence of Inoculum Density of Fusarium oxysporum f. sp. cyclaminis and Sodium Chloride on Cyclamen and the Development of Fusarium Wilt.
    Elmer WH
    Plant Dis; 2002 Apr; 86(4):389-393. PubMed ID: 30818713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifaceted intervention of Bacillus spp. against salinity stress and Fusarium wilt in tomato.
    Medeiros CAA; Bettiol W
    J Appl Microbiol; 2021 Nov; 131(5):2387-2401. PubMed ID: 33817910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Consortium of
    Wong CKF; Zulperi D; Saidi NB; Vadamalai G
    Trop Life Sci Res; 2021 Mar; 32(1):23-45. PubMed ID: 33936549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.