These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 34685870)
1. Recent Advances in Phytohormone Regulation of Apple-Fruit Ripening. Ji Y; Wang A Plants (Basel); 2021 Sep; 10(10):. PubMed ID: 34685870 [TBL] [Abstract][Full Text] [Related]
2. Interference with ethylene perception at receptor level sheds light on auxin and transcriptional circuits associated with the climacteric ripening of apple fruit (Malus x domestica Borkh.). Tadiello A; Longhi S; Moretto M; Ferrarini A; Tononi P; Farneti B; Busatto N; Vrhovsek U; Molin AD; Avanzato C; Biasioli F; Cappellin L; Scholz M; Velasco R; Trainotti L; Delledonne M; Costa F Plant J; 2016 Dec; 88(6):963-975. PubMed ID: 27531564 [TBL] [Abstract][Full Text] [Related]
3. Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription. Li T; Jiang Z; Zhang L; Tan D; Wei Y; Yuan H; Li T; Wang A Plant J; 2016 Dec; 88(5):735-748. PubMed ID: 27476697 [TBL] [Abstract][Full Text] [Related]
4. Expression of MdCAS1 and MdCAS2, encoding apple beta-cyanoalanine synthase homologs, is concomitantly induced during ripening and implicates MdCASs in the possible role of the cyanide detoxification in Fuji apple (Malus domestica Borkh.) fruits. Han SE; Seo YS; Kim D; Sung SK; Kim WT Plant Cell Rep; 2007 Aug; 26(8):1321-31. PubMed ID: 17333023 [TBL] [Abstract][Full Text] [Related]
5. Heterologous Overexpression of Apple Yue Q; Yang X; Cheng P; He J; Shen W; Li Y; Ma F; Niu C; Guan Q Plants (Basel); 2023 Aug; 12(15):. PubMed ID: 37571003 [TBL] [Abstract][Full Text] [Related]
6. Effects of 1-methylcyclopropene (1-MCP) on the expression of genes involved in the chlorophyll degradation pathway of apple fruit during storage. Lv J; Zhang M; Bai L; Han X; Ge Y; Wang W; Li J Food Chem; 2020 Mar; 308():125707. PubMed ID: 31669943 [TBL] [Abstract][Full Text] [Related]
7. Auxin-activated MdARF5 induces the expression of ethylene biosynthetic genes to initiate apple fruit ripening. Yue P; Lu Q; Liu Z; Lv T; Li X; Bu H; Liu W; Xu Y; Yuan H; Wang A New Phytol; 2020 Jun; 226(6):1781-1795. PubMed ID: 32083754 [TBL] [Abstract][Full Text] [Related]
8. Comparative Transcriptomic Profiling to Understand Pre- and Post-Ripening Hormonal Regulations and Anthocyanin Biosynthesis in Early Ripening Apple Fruit. Onik JC; Hu X; Lin Q; Wang Z Molecules; 2018 Jul; 23(8):. PubMed ID: 30065188 [TBL] [Abstract][Full Text] [Related]
9. Climacteric ripening of apple fruit is regulated by transcriptional circuits stimulated by cross-talks between ethylene and auxin. Busatto N; Tadiello A; Trainotti L; Costa F Plant Signal Behav; 2017 Jan; 12(1):e1268312. PubMed ID: 27935411 [TBL] [Abstract][Full Text] [Related]
10. UV-C treatment promotes quality of early ripening apple fruit by regulating malate metabolizing genes during postharvest storage. Onik JC; Xie Y; Duan Y; Hu X; Wang Z; Lin Q PLoS One; 2019; 14(4):e0215472. PubMed ID: 30990828 [TBL] [Abstract][Full Text] [Related]
11. Low temperature delays degreening of apple fruit by inhibiting pheophorbide a oxygenase (PAO) pathway and chlorophyll oxidation during ripening. Lv J; Ding S; Zhang L; Xu D; Zhang Y; Sun M; Ge Y; Li J J Food Biochem; 2022 Aug; 46(8):e14173. PubMed ID: 35383957 [TBL] [Abstract][Full Text] [Related]
12. Technical benefit on apple fruit of controlled atmosphere influenced by 1-MCP at molecular levels. Nunes CFP; de Oliveira IR; Storch TT; Rombaldi CV; Orsel-Baldwin M; Renou JP; Laurens F; Girardi CL Mol Genet Genomics; 2020 Nov; 295(6):1443-1457. PubMed ID: 32700103 [TBL] [Abstract][Full Text] [Related]
13. Abscisic acid biosynthesis, metabolism and signaling in ripening fruit. Wu W; Cao SF; Shi LY; Chen W; Yin XR; Yang ZF Front Plant Sci; 2023; 14():1279031. PubMed ID: 38126013 [TBL] [Abstract][Full Text] [Related]
14. Null mutation of the MdACS3 gene, coding for a ripening-specific 1-aminocyclopropane-1-carboxylate synthase, leads to long shelf life in apple fruit. Wang A; Yamakake J; Kudo H; Wakasa Y; Hatsuyama Y; Igarashi M; Kasai A; Li T; Harada T Plant Physiol; 2009 Sep; 151(1):391-9. PubMed ID: 19587104 [TBL] [Abstract][Full Text] [Related]
15. The regulatory module MdPUB29-MdbHLH3 connects ethylene biosynthesis with fruit quality in apple. Hu DG; Yu JQ; Han PL; Xie XB; Sun CH; Zhang QY; Wang JH; Hao YJ New Phytol; 2019 Mar; 221(4):1966-1982. PubMed ID: 30288754 [TBL] [Abstract][Full Text] [Related]
16. Fruit load and elevation affect ethylene biosynthesis and action in apple fruit (Malus domestica L. Borkh) during development, maturation and ripening. Dal Cin V; Danesin M; Botton A; Boschetti A; Dorigoni A; Ramina A Plant Cell Environ; 2007 Nov; 30(11):1480-5. PubMed ID: 17897417 [TBL] [Abstract][Full Text] [Related]
17. A comprehensive study on the main physiological and biochemical changes occurring during growth and on-tree ripening of two apple varieties with different postharvest behaviour. Giné-Bordonaba J; Echeverria G; Duaigües E; Bobo G; Larrigaudière C Plant Physiol Biochem; 2019 Feb; 135():601-610. PubMed ID: 30442442 [TBL] [Abstract][Full Text] [Related]
18. The Jasmonate-Activated Transcription Factor MdMYC2 Regulates Li T; Xu Y; Zhang L; Ji Y; Tan D; Yuan H; Wang A Plant Cell; 2017 Jun; 29(6):1316-1334. PubMed ID: 28550149 [TBL] [Abstract][Full Text] [Related]
19. Genome-Wide Investigation of the Zinc Finger-Homeodomain Family Genes Reveals Potential Roles in Apple Fruit Ripening. Zheng XB; Wu Y; Wang H; Song SW; Bai TH; Jiao J; Song CH; Pang HG; Wang MM Front Genet; 2021; 12():783482. PubMed ID: 35111199 [TBL] [Abstract][Full Text] [Related]
20. MdERFs, two ethylene-response factors involved in apple fruit ripening. Wang A; Tan D; Takahashi A; Li TZ; Harada T J Exp Bot; 2007; 58(13):3743-8. PubMed ID: 18057044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]