BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 34686173)

  • 21. A Novel Gesture-Based Control System for Fluorescence Volumetric Data in Virtual Reality.
    Cmiel V; Chmelikova L; Zumberg I; Kralik M
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960422
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Potential of Immersive Virtual Reality for Cognitive Training in Elderly.
    Bauer ACM; Andringa G
    Gerontology; 2020; 66(6):614-623. PubMed ID: 32906122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Collaborative Virtual Reality Real-Time 3D Image Editing for Chest Wall Resections and Reconstruction Planning.
    Feodorovici P; Schnorr P; Bedetti B; Zalepugas D; Schmidt J; Arensmeyer JC
    Innovations (Phila); 2023; 18(6):525-530. PubMed ID: 38073259
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Virtual Reality Surgical Simulations Using Fusion Three-Dimensional Images].
    Kin T
    No Shinkei Geka; 2024 Mar; 52(2):240-247. PubMed ID: 38514112
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A standardized set of 3-D objects for virtual reality research and applications.
    Peeters D
    Behav Res Methods; 2018 Jun; 50(3):1047-1054. PubMed ID: 28646401
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved region of interest selection and colocalization analysis in three-dimensional fluorescence microscopy samples using virtual reality.
    Theart RP; Loos B; Powrie YSL; Niesler TR
    PLoS One; 2018; 13(8):e0201965. PubMed ID: 30157239
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Applications of Virtual and Augmented Reality in Biomedical Imaging.
    González Izard S; Juanes Méndez JA; Ruisoto Palomera P; García-Peñalvo FJ
    J Med Syst; 2019 Mar; 43(4):102. PubMed ID: 30874965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immersive and interactive visualization of 3D spatio-temporal data using a space time hypercube: Application to cell division and morphogenesis analysis.
    Fouché G; Argelaguet F; Faure E; Kervrann C
    Front Bioinform; 2023; 3():998991. PubMed ID: 36969798
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [IMMERSIVE SURGICAL NAVIGATION USING SPATIAL INTERACTIVE VIRTUAL REALITY AND HOLOGRAPHIC AUGMENTED REALITY].
    Sugimoto M; Shiga Y; Abe M; Kameyama S; Azuma T
    Nihon Geka Gakkai Zasshi; 2016 Sep; 117(5):387-94. PubMed ID: 30169000
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of Virtual Reality Based on 3D-CTA in Intracranial Aneurysm Surgery.
    Li Z; Huo G; Feng Y; Ma Z
    J Healthc Eng; 2021; 2021():9913949. PubMed ID: 34136112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lift-Off: Using Reference Imagery and Freehand Sketching to Create 3D Models in VR.
    Jackson B; Keefe DF
    IEEE Trans Vis Comput Graph; 2016 Apr; 22(4):1442-51. PubMed ID: 26780801
    [TBL] [Abstract][Full Text] [Related]  

  • 32. UnityMol prototype for FAIR sharing of molecular-visualization experiences: from pictures in the cloud to collaborative virtual reality exploration in immersive 3D environments.
    Martinez X; Baaden M
    Acta Crystallogr D Struct Biol; 2021 Jun; 77(Pt 6):746-754. PubMed ID: 34076589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Implementation of virtual reality (VR) in diagnostics and therapy of nonaffective psychoses.
    Kruk D; Mętel D; Gawęda Ł; Cechnicki A
    Psychiatr Pol; 2020 Oct; 54(5):951-975. PubMed ID: 33529279
    [TBL] [Abstract][Full Text] [Related]  

  • 34. HEARTBEAT4D: An Open-source Toolbox for Turning 4D Cardiac CT into VR/AR.
    Bindschadler M; Buddhe S; Ferguson MR; Jones T; Friedman SD; Otto RK
    J Digit Imaging; 2022 Dec; 35(6):1759-1767. PubMed ID: 35614275
    [TBL] [Abstract][Full Text] [Related]  

  • 35. AR in VR: assessing surgical augmented reality visualizations in a steerable virtual reality environment.
    Hettig J; Engelhardt S; Hansen C; Mistelbauer G
    Int J Comput Assist Radiol Surg; 2018 Nov; 13(11):1717-1725. PubMed ID: 30043197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional immersive virtual reality for studying cellular compartments in 3D models from EM preparations of neural tissues.
    Calì C; Baghabra J; Boges DJ; Holst GR; Kreshuk A; Hamprecht FA; Srinivasan M; Lehväslaiho H; Magistretti PJ
    J Comp Neurol; 2016 Jan; 524(1):23-38. PubMed ID: 26179415
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Challenges of intracellular visualization using virtual and augmented reality.
    Valades-Cruz CA; Leconte L; Fouche G; Blanc T; Van Hille N; Fournier K; Laurent T; Gallean B; Deslandes F; Hajj B; Faure E; Argelaguet F; Trubuil A; Isenberg T; Masson JB; Salamero J; Kervrann C
    Front Bioinform; 2022; 2():997082. PubMed ID: 36304296
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visualization of three-dimensional ultra-high resolution OCT in virtual reality.
    Schulze JP; Schulze-Döbold C; Erginay A; Tadayoni R
    Stud Health Technol Inform; 2013; 184():387-91. PubMed ID: 23400189
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Application of Virtual Reality in Patient Education.
    Pandrangi VC; Gaston B; Appelbaum NP; Albuquerque FC; Levy MM; Larson RA
    Ann Vasc Surg; 2019 Aug; 59():184-189. PubMed ID: 31009725
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatial analysis of histology in 3D: quantification and visualization of organ and tumor level tissue environment.
    Ruusuvuori P; Valkonen M; Kartasalo K; Valkonen M; Visakorpi T; Nykter M; Latonen L
    Heliyon; 2022 Jan; 8(1):e08762. PubMed ID: 35128089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.