These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 34686370)
1. Dual ensemble online modeling for dynamic estimation of hot metal silicon content in blast furnace system. Li Y; Zhang J; Zhang S; Xiao W ISA Trans; 2022 Sep; 128(Pt A):686-697. PubMed ID: 34686370 [TBL] [Abstract][Full Text] [Related]
2. A Novel Online Sequential Extreme Learning Machine for Gas Utilization Ratio Prediction in Blast Furnaces. Li Y; Zhang S; Yin Y; Xiao W; Zhang J Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28796187 [TBL] [Abstract][Full Text] [Related]
3. Robust Online Sequential RVFLNs for Data Modeling of Dynamic Time-Varying Systems With Application of an Ironmaking Blast Furnace. Zhou P; Li W; Wang H; Li M; Chai T IEEE Trans Cybern; 2020 Nov; 50(11):4783-4795. PubMed ID: 31226096 [TBL] [Abstract][Full Text] [Related]
4. Data-Driven Robust M-LS-SVR-Based NARX Modeling for Estimation and Control of Molten Iron Quality Indices in Blast Furnace Ironmaking. Zhou P; Guo D; Wang H; Chai T IEEE Trans Neural Netw Learn Syst; 2018 Sep; 29(9):4007-4021. PubMed ID: 28976324 [TBL] [Abstract][Full Text] [Related]
5. A Multiobjective Evolutionary Nonlinear Ensemble Learning With Evolutionary Feature Selection for Silicon Prediction in Blast Furnace. Wang X; Hu T; Tang L IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):2080-2093. PubMed ID: 33661737 [TBL] [Abstract][Full Text] [Related]
6. Online sequential, outlier robust, and parallel layer perceptron extreme learning machine models for sediment transport in sewer pipes. Kouzehkalani Sales A; Gul E; Safari MJS Environ Sci Pollut Res Int; 2023 Mar; 30(14):39637-39652. PubMed ID: 36596972 [TBL] [Abstract][Full Text] [Related]
7. Recursive least mean p-power Extreme Learning Machine. Yang J; Ye F; Rong HJ; Chen B Neural Netw; 2017 Jul; 91():22-33. PubMed ID: 28478371 [TBL] [Abstract][Full Text] [Related]
8. A hybrid air quality early-warning framework: An hourly forecasting model with online sequential extreme learning machines and empirical mode decomposition algorithms. Sharma E; Deo RC; Prasad R; Parisi AV Sci Total Environ; 2020 Mar; 709():135934. PubMed ID: 31869708 [TBL] [Abstract][Full Text] [Related]
9. High-Performance Visual Tracking With Extreme Learning Machine Framework. Deng C; Han Y; Zhao B IEEE Trans Cybern; 2020 Jun; 50(6):2781-2792. PubMed ID: 30624237 [TBL] [Abstract][Full Text] [Related]
10. Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors. Heddam S; Kisi O Environ Sci Pollut Res Int; 2017 Jul; 24(20):16702-16724. PubMed ID: 28560629 [TBL] [Abstract][Full Text] [Related]
11. Adaptive Online Sequential ELM for Concept Drift Tackling. Budiman A; Fanany MI; Basaruddin C Comput Intell Neurosci; 2016; 2016():8091267. PubMed ID: 27594879 [TBL] [Abstract][Full Text] [Related]
12. Meta-cognitive online sequential extreme learning machine for imbalanced and concept-drifting data classification. Mirza B; Lin Z Neural Netw; 2016 Aug; 80():79-94. PubMed ID: 27187873 [TBL] [Abstract][Full Text] [Related]
13. Online sequential fuzzy extreme learning machine for function approximation and classification problems. Rong HJ; Huang GB; Sundararajan N; Saratchandran P IEEE Trans Syst Man Cybern B Cybern; 2009 Aug; 39(4):1067-72. PubMed ID: 19336333 [TBL] [Abstract][Full Text] [Related]
14. Online Sequential Extreme Learning Machine With Kernels. Scardapane S; Comminiello D; Scarpiniti M; Uncini A IEEE Trans Neural Netw Learn Syst; 2015 Sep; 26(9):2214-20. PubMed ID: 25561597 [TBL] [Abstract][Full Text] [Related]
15. SGB-ELM: An Advanced Stochastic Gradient Boosting-Based Ensemble Scheme for Extreme Learning Machine. Guo H; Wang J; Ao W; He Y Comput Intell Neurosci; 2018; 2018():4058403. PubMed ID: 30046300 [TBL] [Abstract][Full Text] [Related]
16. Multilayer Online Sequential Reduced Kernel Extreme Learning Machine-Based Modeling for Time-Varying Distributed Parameter Systems. Zhu C; Yang H; Jin X; Xu K; Li H IEEE Trans Cybern; 2024 Jan; 54(1):624-634. PubMed ID: 37527310 [TBL] [Abstract][Full Text] [Related]
17. Online prediction of glucose concentration in type 1 diabetes using extreme learning machines. Georga EI; Protopappas VC; Polyzos D; Fotiadis DI Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3262-5. PubMed ID: 26736988 [TBL] [Abstract][Full Text] [Related]
18. Multi-Gate Mixture-of-Experts Stacked Autoencoders for Quality Prediction in Blast Furnace Ironmaking. Zhu H; He B; Zhang X ACS Omega; 2022 Nov; 7(45):41296-41303. PubMed ID: 36406512 [TBL] [Abstract][Full Text] [Related]
19. Drought prediction based on an improved VMD-OS-QR-ELM model. Liu Y; Wang LH; Yang LB; Liu XM PLoS One; 2022; 17(1):e0262329. PubMed ID: 34990468 [TBL] [Abstract][Full Text] [Related]
20. GSOS-ELM: An RFID-Based Indoor Localization System Using GSO Method and Semi-Supervised Online Sequential ELM. Liu F; Zhong D Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29933639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]