These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 34686590)

  • 1. Cochlear outer hair cell electromotility enhances organ of Corti motion on a cycle-by-cycle basis at high frequencies in vivo.
    Dewey JB; Altoè A; Shera CA; Applegate BE; Oghalai JS
    Proc Natl Acad Sci U S A; 2021 Oct; 118(43):. PubMed ID: 34686590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibration of the organ of Corti within the cochlear apex in mice.
    Gao SS; Wang R; Raphael PD; Moayedi Y; Groves AK; Zuo J; Applegate BE; Oghalai JS
    J Neurophysiol; 2014 Sep; 112(5):1192-204. PubMed ID: 24920025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amplification and Suppression of Traveling Waves along the Mouse Organ of Corti: Evidence for Spatial Variation in the Longitudinal Coupling of Outer Hair Cell-Generated Forces.
    Dewey JB; Applegate BE; Oghalai JS
    J Neurosci; 2019 Mar; 39(10):1805-1816. PubMed ID: 30651330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Gap-Junction Mutation Reveals That Outer Hair Cell Extracellular Receptor Potentials Drive High-Frequency Cochlear Amplification.
    Levic S; Lukashkina VA; Simões P; Lukashkin AN; Russell IJ
    J Neurosci; 2022 Oct; 42(42):7875-7884. PubMed ID: 36261265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Megahertz Sampling of Prestin (SLC26a5) Voltage-Sensor Charge Movements in Outer Hair Cell Membranes Reveals Ultrasonic Activity that May Support Electromotility and Cochlear Amplification.
    Santos-Sacchi J; Bai JP; Navaratnam D
    J Neurosci; 2023 Apr; 43(14):2460-2468. PubMed ID: 36868859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo outer hair cell length changes expose the active process in the cochlea.
    Zha D; Chen F; Ramamoorthy S; Fridberger A; Choudhury N; Jacques SL; Wang RK; Nuttall AL
    PLoS One; 2012; 7(4):e32757. PubMed ID: 22496736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cochlear outer hair cell motility.
    Ashmore J
    Physiol Rev; 2008 Jan; 88(1):173-210. PubMed ID: 18195086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The frequency limit of outer hair cell motility measured in vivo.
    Vavakou A; Cooper NP; van der Heijden M
    Elife; 2019 Sep; 8():. PubMed ID: 31547906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cochlear outer hair cell speed paradox.
    Rabbitt RD
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):21880-21888. PubMed ID: 32848062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlorpromazine alters cochlear mechanics and amplification: in vivo evidence for a role of stiffness modulation in the organ of corti.
    Zheng J; Deo N; Zou Y; Grosh K; Nuttall AL
    J Neurophysiol; 2007 Feb; 97(2):994-1004. PubMed ID: 17122316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An outer hair cell-powered global hydromechanical mechanism for cochlear amplification.
    He W; Burwood G; Fridberger A; Nuttall AL; Ren T
    Hear Res; 2022 Sep; 423():108407. PubMed ID: 34922772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier.
    Liberman MC; Gao J; He DZ; Wu X; Jia S; Zuo J
    Nature; 2002 Sep; 419(6904):300-4. PubMed ID: 12239568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibration hotspots reveal longitudinal funneling of sound-evoked motion in the mammalian cochlea.
    Cooper NP; Vavakou A; van der Heijden M
    Nat Commun; 2018 Aug; 9(1):3054. PubMed ID: 30076297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-frequency motility of outer hair cells and the cochlear amplifier.
    Dallos P; Evans BN
    Science; 1995 Mar; 267(5206):2006-9. PubMed ID: 7701325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Normal hearing sensitivity at low-to-middle frequencies with 34% prestin-charge density.
    Yamashita T; Fang J; Gao J; Yu Y; Lagarde MM; Zuo J
    PLoS One; 2012; 7(9):e45453. PubMed ID: 23029017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prestin links extrinsic tuning to neural excitation in the mammalian cochlea.
    Weddell TD; Mellado-Lagarde M; Lukashkina VA; Lukashkin AN; Zuo J; Russell IJ
    Curr Biol; 2011 Sep; 21(18):R682-3. PubMed ID: 21959151
    [No Abstract]   [Full Text] [Related]  

  • 17. Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification.
    Dallos P; Wu X; Cheatham MA; Gao J; Zheng J; Anderson CT; Jia S; Wang X; Cheng WH; Sengupta S; He DZ; Zuo J
    Neuron; 2008 May; 58(3):333-9. PubMed ID: 18466744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Static length changes of cochlear outer hair cells can tune low-frequency hearing.
    Ciganović N; Warren RL; Keçeli B; Jacob S; Fridberger A; Reichenbach T
    PLoS Comput Biol; 2018 Jan; 14(1):e1005936. PubMed ID: 29351276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prestin and electromotility may serve multiple roles in cochlear outer hair cells.
    Zheng J; Takahashi S; Zhou Y; Cheatham MA
    Hear Res; 2022 Sep; 423():108428. PubMed ID: 34987016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Frequency Response of Outer Hair Cell Voltage-Dependent Motility Is Limited by Kinetics of Prestin.
    Santos-Sacchi J; Tan W
    J Neurosci; 2018 Jun; 38(24):5495-5506. PubMed ID: 29899032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.