BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34687197)

  • 21. Development of plant systemic resistance by beneficial rhizobacteria: Recognition, initiation, elicitation and regulation.
    Zhu L; Huang J; Lu X; Zhou C
    Front Plant Sci; 2022; 13():952397. PubMed ID: 36017257
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptional regulators involved in responses to volatile organic compounds in plants.
    Nagashima A; Higaki T; Koeduka T; Ishigami K; Hosokawa S; Watanabe H; Matsui K; Hasezawa S; Touhara K
    J Biol Chem; 2019 Feb; 294(7):2256-2266. PubMed ID: 30593507
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Volatile-mediated plant-plant interactions: volatile organic compounds as modulators of receiver plant defence, growth, and reproduction.
    Brosset A; Blande JD
    J Exp Bot; 2022 Jan; 73(2):511-528. PubMed ID: 34791168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens.
    Asari S; Matzén S; Petersen MA; Bejai S; Meijer J
    FEMS Microbiol Ecol; 2016 Jun; 92(6):fiw070. PubMed ID: 27053756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of Microbial Volatile Organic Compounds in Promoting Plant Growth and Disease Resistance in Horticultural Production.
    Srikamwang C; Onsa NE; Sunanta P; Sangta J; Chanway CP; Thanakkasaranee S; Sommano SR
    Plant Signal Behav; 2023 Dec; 18(1):2227440. PubMed ID: 37366146
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microbial Volatiles: Small Molecules with an Important Role in Intra- and Inter-Kingdom Interactions.
    Schulz-Bohm K; Martín-Sánchez L; Garbeva P
    Front Microbiol; 2017; 8():2484. PubMed ID: 29312193
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbial volatile emissions promote accumulation of exceptionally high levels of starch in leaves in mono- and dicotyledonous plants.
    Ezquer I; Li J; Ovecka M; Baroja-Fernández E; Muñoz FJ; Montero M; Díaz de Cerio J; Hidalgo M; Sesma MT; Bahaji A; Etxeberria E; Pozueta-Romero J
    Plant Cell Physiol; 2010 Oct; 51(10):1674-93. PubMed ID: 20739303
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Volatile terpenes - mediators of plant-to-plant communication.
    Rosenkranz M; Chen Y; Zhu P; Vlot AC
    Plant J; 2021 Nov; 108(3):617-631. PubMed ID: 34369010
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Belowground plant-microbe communications via volatile compounds.
    Sharifi R; Jeon JS; Ryu CM
    J Exp Bot; 2022 Jan; 73(2):463-486. PubMed ID: 34727189
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of Brevibacterium linens RS16 on foliage photosynthetic and volatile emission characteristics upon heat stress in Eucalyptus grandis.
    Chatterjee P; Kanagendran A; Samaddar S; Pazouki L; Sa TM; Niinemets Ü
    Sci Total Environ; 2020 Jan; 700():134453. PubMed ID: 31670196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sweet scents from good bacteria: Case studies on bacterial volatile compounds for plant growth and immunity.
    Chung JH; Song GC; Ryu CM
    Plant Mol Biol; 2016 Apr; 90(6):677-87. PubMed ID: 26177913
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel culture chamber to evaluate in vitro plant-microbe volatile interactions: Effects of Trichoderma harzianum volatiles on wheat plantlets.
    Álvarez-García S; Manga-Robles A; Encina A; Gutiérrez S; Casquero PA
    Plant Sci; 2022 Jul; 320():111286. PubMed ID: 35643620
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biogenic volatile organic compounds in the grapevine response to pathogens, beneficial microorganisms, resistance inducers, and abiotic factors.
    Lazazzara V; Avesani S; Robatscher P; Oberhuber M; Pertot I; Schuhmacher R; Perazzolli M
    J Exp Bot; 2022 Jan; 73(2):529-554. PubMed ID: 34409450
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plant Defense by VOC-Induced Microbial Priming.
    Liu H; Brettell LE
    Trends Plant Sci; 2019 Mar; 24(3):187-189. PubMed ID: 30738790
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Volatile microbial semiochemicals and insect perception at flowers.
    Crowley-Gall A; Rering CC; Rudolph AB; Vannette RL; Beck JJ
    Curr Opin Insect Sci; 2021 Apr; 44():23-34. PubMed ID: 33096275
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined Acute Ozone and Water Stress Alters the Quantitative Relationships between O
    Kask K; Kaurilind E; Talts E; Kännaste A; Niinemets Ü
    Molecules; 2021 May; 26(11):. PubMed ID: 34070994
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Harnessing Insect-Microbe Chemical Communications To Control Insect Pests of Agricultural Systems.
    Beck JJ; Vannette RL
    J Agric Food Chem; 2017 Jan; 65(1):23-28. PubMed ID: 28073253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth.
    Lee S; Hung R; Yap M; Bennett JW
    Arch Microbiol; 2015 Jun; 197(5):723-7. PubMed ID: 25771960
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Volatile organic compound mediated interactions at the plant-microbe interface.
    Junker RR; Tholl D
    J Chem Ecol; 2013 Jul; 39(7):810-25. PubMed ID: 23881446
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioprospecting bacterial and fungal volatiles for sustainable agriculture.
    Kanchiswamy CN; Malnoy M; Maffei ME
    Trends Plant Sci; 2015 Apr; 20(4):206-11. PubMed ID: 25659880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.