BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 34687394)

  • 21. Upregulation of MG53 induces diabetic cardiomyopathy through transcriptional activation of peroxisome proliferation-activated receptor α.
    Liu F; Song R; Feng Y; Guo J; Chen Y; Zhang Y; Chen T; Wang Y; Huang Y; Li CY; Cao C; Zhang Y; Hu X; Xiao RP
    Circulation; 2015 Mar; 131(9):795-804. PubMed ID: 25637627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrogen sulfide promoted retinoic acid-related orphan receptor α transcription to alleviate diabetic cardiomyopathy.
    Zhang S; Shen J; Zhu Y; Zheng Y; San W; Cao D; Chen Y; Meng G
    Biochem Pharmacol; 2023 Sep; 215():115748. PubMed ID: 37591449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exogenous H
    Sun Y; Tian Z; Liu N; Zhang L; Gao Z; Sun X; Yu M; Wu J; Yang F; Zhao Y; Ren H; Chen H; Zhao D; Wang Y; Dong S; Xu C; Lu F; Zhang W
    J Mol Med (Berl); 2018 Apr; 96(3-4):281-299. PubMed ID: 29349500
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Endothelial Dysfunction and Diabetic Cardiomyopathy.
    Wang M; Li Y; Li S; Lv J
    Front Endocrinol (Lausanne); 2022; 13():851941. PubMed ID: 35464057
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DDAH2 alleviates myocardial fibrosis in diabetic cardiomyopathy through activation of the DDAH/ADMA/NOS/NO pathway in rats.
    Zhu ZD; Ye JM; Fu XM; Wang XC; Ye JY; Wu XR; Hua P; Liao YQ; Xuan W; Duan JL; Li WY; Fu H; Xia ZH; Zhang X
    Int J Mol Med; 2019 Feb; 43(2):749-760. PubMed ID: 30569164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MiR-20a-5p overexpression prevented diabetic cardiomyopathy via inhibition of cardiomyocyte apoptosis, hypertrophy, fibrosis and JNK/NF-κB signalling pathway.
    Liu X; Guo B; Zhang W; Ma B; Li Y
    J Biochem; 2021 Oct; 170(3):349-362. PubMed ID: 33837411
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Corin is down-regulated and exerts cardioprotective action via activating pro-atrial natriuretic peptide pathway in diabetic cardiomyopathy.
    Pang A; Hu Y; Zhou P; Long G; Tian X; Men L; Shen Y; Liu Y; Cui Y
    Cardiovasc Diabetol; 2015 Oct; 14():134. PubMed ID: 26446774
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diabetic cardiomyopathy: molecular mechanisms, detrimental effects of conventional treatment, and beneficial effects of natural therapy.
    Parim B; Sathibabu Uddandrao VV; Saravanan G
    Heart Fail Rev; 2019 Mar; 24(2):279-299. PubMed ID: 30349977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogen sulfide attenuates the development of diabetic cardiomyopathy.
    Zhou X; An G; Lu X
    Clin Sci (Lond); 2015 Mar; 128(5):325-35. PubMed ID: 25394291
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy.
    Palomer X; Salvadó L; Barroso E; Vázquez-Carrera M
    Int J Cardiol; 2013 Oct; 168(4):3160-72. PubMed ID: 23932046
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transforming growth factor beta (TGF-β) mediates cardiac fibrosis and induces diabetic cardiomyopathy.
    Yue Y; Meng K; Pu Y; Zhang X
    Diabetes Res Clin Pract; 2017 Nov; 133():124-130. PubMed ID: 28934669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exogenous hydrogen sulfide attenuates the development of diabetic cardiomyopathy via the FoxO1 pathway.
    Ye P; Gu Y; Zhu YR; Chao YL; Kong XQ; Luo J; Ren XM; Zuo GF; Zhang DM; Chen SL
    J Cell Physiol; 2018 Dec; 233(12):9786-9798. PubMed ID: 30078216
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of diabetes on alteration of metabolism in cardiac myocytes: therapeutic implications.
    Kota SK; Kota SK; Jammula S; Panda S; Modi KD
    Diabetes Technol Ther; 2011 Nov; 13(11):1155-60. PubMed ID: 21751873
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SIRT6: A potential therapeutic target for diabetic cardiomyopathy.
    Wu T; Qu Y; Xu S; Wang Y; Liu X; Ma D
    FASEB J; 2023 Aug; 37(8):e23099. PubMed ID: 37462453
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Defective insulin signaling and mitochondrial dynamics in diabetic cardiomyopathy.
    Westermeier F; Navarro-Marquez M; López-Crisosto C; Bravo-Sagua R; Quiroga C; Bustamante M; Verdejo HE; Zalaquett R; Ibacache M; Parra V; Castro PF; Rothermel BA; Hill JA; Lavandero S
    Biochim Biophys Acta; 2015 May; 1853(5):1113-8. PubMed ID: 25686534
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Soluble Klotho-integrin β1/ERK1/2 pathway ameliorates myocardial fibrosis in diabetic cardiomyopathy.
    Li JM; Chen FF; Li GH; Zhu JL; Zhou Y; Wei XY; Zheng F; Wang LL; Zhang W; Zhong M; Zhang MM; Ding WY
    FASEB J; 2021 Nov; 35(11):e21960. PubMed ID: 34694637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pathophysiology and Treatment of Diabetic Cardiomyopathy and Heart Failure in Patients with Diabetes Mellitus.
    Nakamura K; Miyoshi T; Yoshida M; Akagi S; Saito Y; Ejiri K; Matsuo N; Ichikawa K; Iwasaki K; Naito T; Namba Y; Yoshida M; Sugiyama H; Ito H
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408946
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exercise enhances cardiac function by improving mitochondrial dysfunction and maintaining energy homoeostasis in the development of diabetic cardiomyopathy.
    Wang SY; Zhu S; Wu J; Zhang M; Xu Y; Xu W; Cui J; Yu B; Cao W; Liu J
    J Mol Med (Berl); 2020 Feb; 98(2):245-261. PubMed ID: 31897508
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cardiomyopathy in obesity, insulin resistance and diabetes.
    Nakamura M; Sadoshima J
    J Physiol; 2020 Jul; 598(14):2977-2993. PubMed ID: 30869158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contribution of Impaired Insulin Signaling to the Pathogenesis of Diabetic Cardiomyopathy.
    Zamora M; Villena JA
    Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31212580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.