These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34687466)

  • 1. Probing single-cell oxygen reserve in sickled erythrocytes via in vivo photoacoustic microscopy.
    Ford AL; Hsu HC; Binkley MM; Rogers S; Imai T; Maslov K; Doctor A; Wang LV; Lee JM
    Am J Hematol; 2022 Jan; 97(1):E11-E14. PubMed ID: 34687466
    [No Abstract]   [Full Text] [Related]  

  • 2. Photoacoustic Flow Cytometry for Single Sickle Cell Detection
    Cai C; Nedosekin DA; Menyaev YA; Sarimollaoglu M; Proskurnin MA; Zharov VP
    Anal Cell Pathol (Amst); 2016; 2016():2642361. PubMed ID: 27699143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo acoustic and photoacoustic focusing of circulating cells.
    Galanzha EI; Viegas MG; Malinsky TI; Melerzanov AV; Juratli MA; Sarimollaoglu M; Nedosekin DA; Zharov VP
    Sci Rep; 2016 Mar; 6():21531. PubMed ID: 26979811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphologic studies of sickle erythrocytes by image analysis.
    Horiuchi K; Ohata J; Hirano Y; Asakura T
    J Lab Clin Med; 1990 May; 115(5):613-20. PubMed ID: 2341764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid erythrocytes for membrane studies in sickle cell disease.
    Clark MR; Shohet SB
    Blood; 1976 Jan; 47(1):121-31. PubMed ID: 1244907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased efflux of oxidized glutathione (GSSG) causes glutathione depletion and potentially diminishes antioxidant defense in sickle erythrocytes.
    Nur E; Verwijs M; de Waart DR; Schnog JJ; Otten HM; Brandjes DP; Biemond BJ; Elferink RP;
    Biochim Biophys Acta; 2011 Nov; 1812(11):1412-7. PubMed ID: 21558001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filterability of freshly-collected sickle erythrocytes under venous oxygen pressure without exposure to air.
    Shah S; Acholonu RG; Ohene-Frempong K; Asakura T
    Blood Cells Mol Dis; 2015 Dec; 55(4):328-35. PubMed ID: 26460256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Irreversibly sickled erythrocytes in sickle cell anemia: a quantitative reappraisal.
    Rodgers GP; Noguchi CT; Schechter AN
    Am J Hematol; 1985 Sep; 20(1):17-23. PubMed ID: 4025318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput assessment of hemoglobin polymer in single red blood cells from sickle cell patients under controlled oxygen tension.
    Di Caprio G; Schonbrun E; Gonçalves BP; Valdez JM; Wood DK; Higgins JM
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):25236-25242. PubMed ID: 31767751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can new optical techniques for in vivo imaging and flow cytometry of the microcirculation benefit sickle cell disease research?
    Morgan SP
    Cytometry A; 2011 Oct; 79(10):766-74. PubMed ID: 21744494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red cell membrane injury in sickle cell anaemia.
    Palek J
    Br J Haematol; 1977 Jan; 35(1):1-9. PubMed ID: 322695
    [No Abstract]   [Full Text] [Related]  

  • 12. Human induced pluripotent stem cells can reach complete terminal maturation: in vivo and in vitro evidence in the erythropoietic differentiation model.
    Kobari L; Yates F; Oudrhiri N; Francina A; Kiger L; Mazurier C; Rouzbeh S; El-Nemer W; Hebert N; Giarratana MC; François S; Chapel A; Lapillonne H; Luton D; Bennaceur-Griscelli A; Douay L
    Haematologica; 2012 Dec; 97(12):1795-803. PubMed ID: 22733021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging flow cytometry for automated detection of hypoxia-induced erythrocyte shape change in sickle cell disease.
    van Beers EJ; Samsel L; Mendelsohn L; Saiyed R; Fertrin KY; Brantner CA; Daniels MP; Nichols J; McCoy JP; Kato GJ
    Am J Hematol; 2014 Jun; 89(6):598-603. PubMed ID: 24585634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preventing delayed hemolytic transfusion reactions in sickle cell disease.
    Castro O; Oneal P; Medina A; Onojobi G; Gordeuk VR
    Transfusion; 2016 Nov; 56(11):2899-2900. PubMed ID: 28211954
    [No Abstract]   [Full Text] [Related]  

  • 15. Morphological and submicroscopic comparison of sickle erythrocytes of humans and deer.
    Simpson CF; Taylor WJ
    Ann N Y Acad Sci; 1974 Nov; 241(0):614-22. PubMed ID: 4139922
    [No Abstract]   [Full Text] [Related]  

  • 16. Volumetric imaging of erythrocytes using label-free multiphoton photoacoustic microscopy.
    Shelton RL; Mattison SP; Applegate BE
    J Biophotonics; 2014 Oct; 7(10):834-40. PubMed ID: 23963621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights provided by a comparison of impaired deformability with erythrocyte oxidative stress for sickle cell disease.
    Barodka VM; Nagababu E; Mohanty JG; Nyhan D; Berkowitz DE; Rifkind JM; Strouse JJ
    Blood Cells Mol Dis; 2014 Apr; 52(4):230-5. PubMed ID: 24246527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abnormal regulation of Mg2+ transport via Na/Mg exchanger in sickle erythrocytes.
    Rivera A; Ferreira A; Bertoni D; Romero JR; Brugnara C
    Blood; 2005 Jan; 105(1):382-6. PubMed ID: 15353477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The activation of KCL cotransport by deoxygenation and its role in sickle cell dehydration.
    Joiner CH; Franco RS
    Blood Cells Mol Dis; 2001; 27(1):158-64. PubMed ID: 11358377
    [No Abstract]   [Full Text] [Related]  

  • 20. F-cell levels are altered with erythrocyte density in sickle cell disease.
    Basu S; Dash BP; Patel DK; Chakravarty S; Chakravarty A; Banerjee D; Chakrabarti A
    Blood Cells Mol Dis; 2011 Aug; 47(2):117-9. PubMed ID: 21592828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.