These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 34687722)

  • 1. Impact of chromosomal organization on epigenetic drift and domain stability revealed by physics-based simulations.
    Wakim JG; Sandholtz SH; Spakowitz AJ
    Biophys J; 2021 Nov; 120(22):4932-4943. PubMed ID: 34687722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical modeling of the heritability and maintenance of epigenetic modifications.
    Sandholtz SH; MacPherson Q; Spakowitz AJ
    Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20423-20429. PubMed ID: 32778583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bottom-up modeling of chromatin segregation due to epigenetic modifications.
    MacPherson Q; Beltran B; Spakowitz AJ
    Proc Natl Acad Sci U S A; 2018 Dec; 115(50):12739-12744. PubMed ID: 30478042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spreading and epigenetic inheritance of heterochromatin require a critical density of histone H3 lysine 9 tri-methylation.
    Cutter DiPiazza AR; Taneja N; Dhakshnamoorthy J; Wheeler D; Holla S; Grewal SIS
    Proc Natl Acad Sci U S A; 2021 Jun; 118(22):. PubMed ID: 34035174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular landscape of modified histones in Drosophila heterochromatic genes and euchromatin-heterochromatin transition zones.
    Yasuhara JC; Wakimoto BT
    PLoS Genet; 2008 Jan; 4(1):e16. PubMed ID: 18208336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The histone methyltransferase SUV420H2 and Heterochromatin Proteins HP1 interact but show different dynamic behaviours.
    Souza PP; Völkel P; Trinel D; Vandamme J; Rosnoblet C; Héliot L; Angrand PO
    BMC Cell Biol; 2009 Jun; 10():41. PubMed ID: 19486527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic model of heterochromatin formation through epigenetic regulation.
    Mulligan PJ; Koslover EF; Spakowitz AJ
    J Phys Condens Matter; 2015 Feb; 27(6):064109. PubMed ID: 25563699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic replacement of histone H3 variants reprograms epigenetic marks in early mouse embryos.
    Akiyama T; Suzuki O; Matsuda J; Aoki F
    PLoS Genet; 2011 Oct; 7(10):e1002279. PubMed ID: 21998593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histone H3 lysine 4 methylation marks postreplicative human cytomegalovirus chromatin.
    Nitzsche A; Steinhäusser C; Mücke K; Paulus C; Nevels M
    J Virol; 2012 Sep; 86(18):9817-27. PubMed ID: 22761369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methyl-CpG binding domain 1 (MBD1) interacts with the Suv39h1-HP1 heterochromatic complex for DNA methylation-based transcriptional repression.
    Fujita N; Watanabe S; Ichimura T; Tsuruzoe S; Shinkai Y; Tachibana M; Chiba T; Nakao M
    J Biol Chem; 2003 Jun; 278(26):24132-8. PubMed ID: 12711603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of promoter DNA sequence to heterochromatin formation velocity and memory of gene repression in mouse embryo fibroblasts.
    Vignaux PA; Bregio C; Hathaway NA
    PLoS One; 2019; 14(7):e0217699. PubMed ID: 31269077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histone modification and the control of heterochromatic gene silencing in Drosophila.
    Ebert A; Lein S; Schotta G; Reuter G
    Chromosome Res; 2006; 14(4):377-92. PubMed ID: 16821134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HP1 maintains protein stability of H3K9 methyltransferases and demethylases.
    Maeda R; Tachibana M
    EMBO Rep; 2022 Apr; 23(4):e53581. PubMed ID: 35166421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intricate regulation on epigenetic stability of the subtelomeric heterochromatin and the centromeric chromatin in fission yeast.
    Lu M; He X
    Curr Genet; 2019 Apr; 65(2):381-386. PubMed ID: 30244281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetics of eu- and heterochromatin in inverted and conventional nuclei from mouse retina.
    Eberhart A; Feodorova Y; Song C; Wanner G; Kiseleva E; Furukawa T; Kimura H; Schotta G; Leonhardt H; Joffe B; Solovei I
    Chromosome Res; 2013 Aug; 21(5):535-54. PubMed ID: 23996328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone epigenetic marks in heterochromatin and euchromatin of the Chagas' disease vector, Triatoma infestans.
    Alvarenga EM; Rodrigues VL; Moraes AS; Naves LS; Mondin M; Felisbino MB; Mello ML
    Acta Histochem; 2016 May; 118(4):401-12. PubMed ID: 27079857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cathepsin L stabilizes the histone modification landscape on the Y chromosome and pericentromeric heterochromatin.
    Bulynko YA; Hsing LC; Mason RW; Tremethick DJ; Grigoryev SA
    Mol Cell Biol; 2006 Jun; 26(11):4172-84. PubMed ID: 16705169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mouse Heterochromatin Adopts Digital Compaction States without Showing Hallmarks of HP1-Driven Liquid-Liquid Phase Separation.
    Erdel F; Rademacher A; Vlijm R; Tünnermann J; Frank L; Weinmann R; Schweigert E; Yserentant K; Hummert J; Bauer C; Schumacher S; Al Alwash A; Normand C; Herten DP; Engelhardt J; Rippe K
    Mol Cell; 2020 Apr; 78(2):236-249.e7. PubMed ID: 32101700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterochromatin revisited.
    Grewal SI; Jia S
    Nat Rev Genet; 2007 Jan; 8(1):35-46. PubMed ID: 17173056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin Compaction Leads to a Preference for Peripheral Heterochromatin.
    MacPherson Q; Beltran B; Spakowitz AJ
    Biophys J; 2020 Mar; 118(6):1479-1488. PubMed ID: 32097622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.