These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34687809)

  • 1. Glucose metabolism in Pseudomonas aeruginosa is cyclic when producing Polyhydroxyalkanoates and Rhamnolipids.
    de Oliveira RD; Novello V; da Silva LF; Gomez JGC; Le Roux GAC
    J Biotechnol; 2021 Dec; 342():54-63. PubMed ID: 34687809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GC-MS-based
    Kohlstedt M; Wittmann C
    Metab Eng; 2019 Jul; 54():35-53. PubMed ID: 30831266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative ¹³C NMR analysis of the products in wild-type and mutants.
    Choi MH; Xu J; Gutierrez M; Yoo T; Cho YH; Yoon SC
    J Biotechnol; 2011 Jan; 151(1):30-42. PubMed ID: 21029757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of β-oxidation and de novo fatty acid synthesis in the production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa.
    Gutiérrez-Gómez U; Servín-González L; Soberón-Chávez G
    Appl Microbiol Biotechnol; 2019 May; 103(9):3753-3760. PubMed ID: 30919102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced rhamnolipids production in Pseudomonas aeruginosa SG by selectively blocking metabolic bypasses of glycosyl and fatty acid precursors.
    Lei L; Zhao F; Han S; Zhang Y
    Biotechnol Lett; 2020 Jun; 42(6):997-1002. PubMed ID: 32060764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudomonas putida KT2440 Strain Metabolizes Glucose through a Cycle Formed by Enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and Pentose Phosphate Pathways.
    Nikel PI; Chavarría M; Fuhrer T; Sauer U; de Lorenzo V
    J Biol Chem; 2015 Oct; 290(43):25920-32. PubMed ID: 26350459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contextual Flexibility in Pseudomonas aeruginosa Central Carbon Metabolism during Growth in Single Carbon Sources.
    Dolan SK; Kohlstedt M; Trigg S; Vallejo Ramirez P; Kaminski CF; Wittmann C; Welch M
    mBio; 2020 Mar; 11(2):. PubMed ID: 32184246
    [No Abstract]   [Full Text] [Related]  

  • 8. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol.
    Beckers V; Poblete-Castro I; Tomasch J; Wittmann C
    Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of targets related to the Entner-Doudoroff/pentose phosphate pathway route for methyl-D-erythritol 4-phosphate-dependent carotenoid biosynthesis in Escherichia coli.
    Li C; Ying LQ; Zhang SS; Chen N; Liu WF; Tao Y
    Microb Cell Fact; 2015 Aug; 14():117. PubMed ID: 26264597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Cyclic Metabolic Network in Pseudomonas protegens Pf-5 Prioritizes the Entner-Doudoroff Pathway and Exhibits Substrate Hierarchy during Carbohydrate Co-Utilization.
    Wilkes RA; Mendonca CM; Aristilde L
    Appl Environ Microbiol; 2019 Jan; 85(1):. PubMed ID: 30366991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analogous Metabolic Decoupling in Pseudomonas putida and Comamonas testosteroni Implies Energetic Bypass to Facilitate Gluconeogenic Growth.
    Wilkes RA; Waldbauer J; Aristilde L
    mBio; 2021 Dec; 12(6):e0325921. PubMed ID: 34903058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overproduction of rhamnolipids in Pseudomonas aeruginosa PA14 by redirection of the carbon flux from polyhydroxyalkanoate synthesis and overexpression of the rhlAB-R operon.
    Gutiérrez-Gómez U; Soto-Aceves MP; Servín-González L; Soberón-Chávez G
    Biotechnol Lett; 2018 Dec; 40(11-12):1561-1566. PubMed ID: 30264296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa.
    Hori K; Marsudi S; Unno H
    Biotechnol Bioeng; 2002 Jun; 78(6):699-707. PubMed ID: 11992535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa.
    Marsudi S; Unno H; Hori K
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):955-61. PubMed ID: 18299827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robustness and plasticity of metabolic pathway flux among uropathogenic isolates of Pseudomonas aeruginosa.
    Berger A; Dohnt K; Tielen P; Jahn D; Becker J; Wittmann C
    PLoS One; 2014; 9(4):e88368. PubMed ID: 24709961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Entner-Doudoroff and Nonoxidative Pentose Phosphate Pathways Bypass Glycolysis and the Oxidative Pentose Phosphate Pathway in Ralstonia solanacearum.
    Jyoti P; Shree M; Joshi C; Prakash T; Ray SK; Satapathy SS; Masakapalli SK
    mSystems; 2020 Mar; 5(2):. PubMed ID: 32156794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of rhamnolipids by Pseudomonas aeruginosa.
    Soberón-Chávez G; Lépine F; Déziel E
    Appl Microbiol Biotechnol; 2005 Oct; 68(6):718-25. PubMed ID: 16160828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cassava wastewater as a substrate for the simultaneous production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa.
    Costa SG; Lépine F; Milot S; Déziel E; Nitschke M; Contiero J
    J Ind Microbiol Biotechnol; 2009 Aug; 36(8):1063-72. PubMed ID: 19471980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of isopropyl alcohol-producing Escherichia coli strains with
    Okahashi N; Matsuda F; Yoshikawa K; Shirai T; Matsumoto Y; Wada M; Shimizu H
    Biotechnol Bioeng; 2017 Dec; 114(12):2782-2793. PubMed ID: 28755490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic flux analyses of Pseudomonas aeruginosa cystic fibrosis isolates.
    Opperman MJ; Shachar-Hill Y
    Metab Eng; 2016 Nov; 38():251-263. PubMed ID: 27637318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.