BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

478 related articles for article (PubMed ID: 34688602)

  • 1. Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study.
    Jayachandran Preetha C; Meredig H; Brugnara G; Mahmutoglu MA; Foltyn M; Isensee F; Kessler T; Pflüger I; Schell M; Neuberger U; Petersen J; Wick A; Heiland S; Debus J; Platten M; Idbaih A; Brandes AA; Winkler F; van den Bent MJ; Nabors B; Stupp R; Maier-Hein KH; Gorlia T; Tonn JC; Weller M; Wick W; Bendszus M; Vollmuth P
    Lancet Digit Health; 2021 Dec; 3(12):e784-e794. PubMed ID: 34688602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep-learning-based reconstruction of undersampled MRI to reduce scan times: a multicentre, retrospective, cohort study.
    Rastogi A; Brugnara G; Foltyn-Dumitru M; Mahmutoglu MA; Preetha CJ; Kobler E; Pflüger I; Schell M; Deike-Hofmann K; Kessler T; van den Bent MJ; Idbaih A; Platten M; Brandes AA; Nabors B; Stupp R; Bernhardt D; Debus J; Abdollahi A; Gorlia T; Tonn JC; Weller M; Maier-Hein KH; Radbruch A; Wick W; Bendszus M; Meredig H; Kurz FT; Vollmuth P
    Lancet Oncol; 2024 Mar; 25(3):400-410. PubMed ID: 38423052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study.
    Kickingereder P; Isensee F; Tursunova I; Petersen J; Neuberger U; Bonekamp D; Brugnara G; Schell M; Kessler T; Foltyn M; Harting I; Sahm F; Prager M; Nowosielski M; Wick A; Nolden M; Radbruch A; Debus J; Schlemmer HP; Heiland S; Platten M; von Deimling A; van den Bent MJ; Gorlia T; Wick W; Bendszus M; Maier-Hein KH
    Lancet Oncol; 2019 May; 20(5):728-740. PubMed ID: 30952559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generative Adversarial Networks to Synthesize Missing T1 and FLAIR MRI Sequences for Use in a Multisequence Brain Tumor Segmentation Model.
    Conte GM; Weston AD; Vogelsang DC; Philbrick KA; Cai JC; Barbera M; Sanvito F; Lachance DH; Jenkins RB; Tobin WO; Eckel-Passow JE; Erickson BJ
    Radiology; 2021 May; 299(2):313-323. PubMed ID: 33687284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased Delay Between Gadolinium Chelate Administration and T1-Weighted Magnetic Resonance Imaging Acquisition Increases Contrast-Enhancing Tumor Volumes and T1 Intensities in Brain Tumor Patients.
    Piechotta PL; Bonekamp D; Sill M; Wick A; Wick W; Bendszus M; Kickingereder P
    Invest Radiol; 2018 Apr; 53(4):223-228. PubMed ID: 29200014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of deep learning synthesis of synthetic CTs using clinical MRI inputs.
    Massa HA; Johnson JM; McMillan AB
    Phys Med Biol; 2020 Dec; 65(23):23NT03. PubMed ID: 33120371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI.
    Gong E; Pauly JM; Wintermark M; Zaharchuk G
    J Magn Reson Imaging; 2018 Aug; 48(2):330-340. PubMed ID: 29437269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint MRI T1 Unenhancing and Contrast-enhancing Multiple Sclerosis Lesion Segmentation with Deep Learning in OPERA Trials.
    Krishnan AP; Song Z; Clayton D; Gaetano L; Jia X; de Crespigny A; Bengtsson T; Carano RAD
    Radiology; 2022 Mar; 302(3):662-673. PubMed ID: 34904871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal Increase on Unenhanced T1-Weighted Images in the Rat Brain After Repeated, Extended Doses of Gadolinium-Based Contrast Agents: Comparison of Linear and Macrocyclic Agents.
    Jost G; Lenhard DC; Sieber MA; Lohrke J; Frenzel T; Pietsch H
    Invest Radiol; 2016 Feb; 51(2):83-9. PubMed ID: 26606548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning-based Identification of Brain MRI Sequences Using a Model Trained on Large Multicentric Study Cohorts.
    Mahmutoglu MA; Preetha CJ; Meredig H; Tonn JC; Weller M; Wick W; Bendszus M; Brugnara G; Vollmuth P
    Radiol Artif Intell; 2024 Jan; 6(1):e230095. PubMed ID: 38166331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual Contrast-Enhanced Magnetic Resonance Images Synthesis for Patients With Nasopharyngeal Carcinoma Using Multimodality-Guided Synergistic Neural Network.
    Li W; Xiao H; Li T; Ren G; Lam S; Teng X; Liu C; Zhang J; Kar-Ho Lee F; Au KH; Ho-Fun Lee V; Chang ATY; Cai J
    Int J Radiat Oncol Biol Phys; 2022 Mar; 112(4):1033-1044. PubMed ID: 34774997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning to Simulate Contrast-enhanced Breast MRI of Invasive Breast Cancer.
    Chung M; Calabrese E; Mongan J; Ray KM; Hayward JH; Kelil T; Sieberg R; Hylton N; Joe BN; Lee AY
    Radiology; 2023 Mar; 306(3):e213199. PubMed ID: 36378030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of at Least 10 Serial Gadobutrol Administrations on Brain Signal Intensity Ratios on T1-Weighted MRI in Children: A Matched Case-Control Study.
    Ozturk K; Nascene D
    AJR Am J Roentgenol; 2021 Sep; 217(3):753-760. PubMed ID: 33112200
    [No Abstract]   [Full Text] [Related]  

  • 14. Can Virtual Contrast Enhancement in Brain MRI Replace Gadolinium?: A Feasibility Study.
    Kleesiek J; Morshuis JN; Isensee F; Deike-Hofmann K; Paech D; Kickingereder P; Köthe U; Rother C; Forsting M; Wick W; Bendszus M; Schlemmer HP; Radbruch A
    Invest Radiol; 2019 Oct; 54(10):653-660. PubMed ID: 31261293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An alternative approach to contrast-enhanced imaging: diffusion-weighted imaging and T
    Rogers HJ; Verhagen MV; Shelmerdine SC; Clark CA; Hales PW
    Eur Radiol; 2019 Aug; 29(8):4141-4149. PubMed ID: 30560365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrast-enhanced MRI synthesis using dense-dilated residual convolutions based 3D network toward elimination of gadolinium in neuro-oncology.
    Osman AFI; Tamam NM
    J Appl Clin Med Phys; 2023 Dec; 24(12):e14120. PubMed ID: 37552487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical target volume delineation in glioblastomas: pre-operative versus post-operative/pre-radiotherapy MRI.
    Farace P; Giri MG; Meliadò G; Amelio D; Widesott L; Ricciardi GK; Dall'Oglio S; Rizzotti A; Sbarbati A; Beltramello A; Maluta S; Amichetti M
    Br J Radiol; 2011 Mar; 84(999):271-8. PubMed ID: 21045069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can Deep Learning Replace Gadolinium in Neuro-Oncology?: A Reader Study.
    Ammari S; Bône A; Balleyguier C; Moulton E; Chouzenoux É; Volk A; Menu Y; Bidault F; Nicolas F; Robert P; Rohé MM; Lassau N
    Invest Radiol; 2022 Feb; 57(2):99-107. PubMed ID: 34324463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation of MRI sequences to assess progressive glioblastoma multiforme treated with bevacizumab.
    Thompson EM; Dosa E; Kraemer DF; Neuwelt EA
    J Neurooncol; 2011 Jun; 103(2):353-60. PubMed ID: 20848300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semiautomated segmentation of hepatocellular carcinoma tumors with MRI using convolutional neural networks.
    Said D; Carbonell G; Stocker D; Hectors S; Vietti-Violi N; Bane O; Chin X; Schwartz M; Tabrizian P; Lewis S; Greenspan H; Jégou S; Schiratti JB; Jehanno P; Taouli B
    Eur Radiol; 2023 Sep; 33(9):6020-6032. PubMed ID: 37071167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.