These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 3468867)

  • 1. Dynamic variations of the brain cell microenvironment in relation to neuronal hyperactivity.
    Dietzel I; Heinemann U
    Ann N Y Acad Sci; 1986; 481():72-86. PubMed ID: 3468867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic changes and alterations in the size of the extracellular space during epileptic activity.
    Lux HD; Heinemann U; Dietzel I
    Adv Neurol; 1986; 44():619-39. PubMed ID: 3518349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulus-induced changes in extracellular Na+ and Cl- concentration in relation to changes in the size of the extracellular space.
    Dietzel I; Heinemann U; Hofmeier G; Lux HD
    Exp Brain Res; 1982; 46(1):73-84. PubMed ID: 6279427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-induced changes of extracellular ions and volume in the isolated chick retina-pigment epithelium preparation.
    Dmitriev AV; Govardovskii VI; Schwahn HN; Steinberg RH
    Vis Neurosci; 1999; 16(6):1157-67. PubMed ID: 10614595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relations between slow extracellular potential changes, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain.
    Dietzel I; Heinemann U; Lux HD
    Glia; 1989; 2(1):25-44. PubMed ID: 2523337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clearance of extracellular potassium: evidence for spatial buffering by glial cells in the retina of the drone.
    Gardner-Medwin AR; Coles JA; Tsacopoulos M
    Brain Res; 1981 Mar; 209(2):452-7. PubMed ID: 6261870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of osmotic stress on potassium accumulation around glial cells and extracellular space volume in rat spinal cord slices.
    Vargová L; Chvátal A; Anderová M; Kubinová S; Ziak D; Syková E
    J Neurosci Res; 2001 Jul; 65(2):129-38. PubMed ID: 11438982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations.
    Kager H; Wadman WJ; Somjen GG
    J Neurophysiol; 2000 Jul; 84(1):495-512. PubMed ID: 10899222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity-dependent astrocyte swelling is mediated by pH-regulating mechanisms.
    Larsen BR; MacAulay N
    Glia; 2017 Oct; 65(10):1668-1681. PubMed ID: 28744903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. II. Role of extracellular potassium.
    Yaari Y; Konnerth A; Heinemann U
    J Neurophysiol; 1986 Aug; 56(2):424-38. PubMed ID: 3760929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular potassium, glial and neuronal potentials in the solitary complex of rat brainstem slices.
    Ballanyi K; Branchereau P; Champagnat J; Fortin G; Velluti J
    Brain Res; 1993 Apr; 607(1-2):99-107. PubMed ID: 8097669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free concentrations of Na, K, and Cl in the retina of the honeybee drone: stimulus-induced redistribution and homeostasis.
    Coles JA; Orkand RK; Yamate CL; Tsacopoulos M
    Ann N Y Acad Sci; 1986; 481():303-17. PubMed ID: 3468862
    [No Abstract]   [Full Text] [Related]  

  • 13. The activity of a transient potassium current in retinal glial (Müller) cells depends on extracellular calcium.
    Bringmann A; Schopf S; Faude F; Skatchkov SN; Enzmann V; Reichenbach A
    J Hirnforsch; 1999; 39(4):539-50. PubMed ID: 10841453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preferential uptake of rubidium from extracellular space by glial cells compared to neurons in leech ganglia.
    Saubermann AJ; Castiglia CM; Foster MC
    Brain Res; 1992 Apr; 577(1):64-72. PubMed ID: 1521148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of changes evoked by GABA (gamma-aminobutyric acid) and anoxia in [K+]o, [Cl-]o, and [Na+]o in stratum pyramidale and stratum radiatum of the guinea pig hippocampus.
    Obrocea GV; Morris ME
    Can J Physiol Pharmacol; 2000 May; 78(5):378-91. PubMed ID: 10841433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular potassium concentration in chronic alumina cream foci of cats.
    Heinemann U; Dietzel I
    J Neurophysiol; 1984 Sep; 52(3):421-34. PubMed ID: 6090607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular pH and stimulated neurons.
    Syková E; Svoboda J; Chvátal A; Jendelová P
    Ciba Found Symp; 1988; 139():220-35. PubMed ID: 3203566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracellular potassium accumulation in the nervous system.
    Orkand RK
    Fed Proc; 1980 Apr; 39(5):1515-8. PubMed ID: 7364046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ischemia-induced changes in the extracellular space diffusion parameters, K+, and pH in the developing rat cortex and corpus callosum.
    Vorísek I; Syková E
    J Cereb Blood Flow Metab; 1997 Feb; 17(2):191-203. PubMed ID: 9040499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Independent mechanisms of potassium clearance by astrocytes in gliotic tissue.
    Walz W; Wuttke WA
    J Neurosci Res; 1999 Jun; 56(6):595-603. PubMed ID: 10374814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.