These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 34688689)

  • 41. Serrate and Notch specify cell fates in the heart field by suppressing cardiomyogenesis.
    Rones MS; McLaughlin KA; Raffin M; Mercola M
    Development; 2000 Sep; 127(17):3865-76. PubMed ID: 10934030
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Foxn4: a multi-faceted transcriptional regulator of cell fates in vertebrate development.
    Xiang M; Li S
    Sci China Life Sci; 2013 Nov; 56(11):985-93. PubMed ID: 24008385
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transcriptional regulation of epidermal cell fate in the Arabidopsis embryo.
    Takada S; Jürgens G
    Development; 2007 Mar; 134(6):1141-50. PubMed ID: 17301085
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced Transcriptional Strength of HIV-1 Subtype C Minimizes Gene Expression Noise and Confers Stability to the Viral Latent State.
    Pal S; Jaiswal V; Nala N; Ranga U
    J Virol; 2023 Jan; 97(1):e0137622. PubMed ID: 36533949
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of Ind transcription activation and repression domains required for dorsoventral patterning of the CNS.
    Von Ohlen TL; Moses C
    Mech Dev; 2009 Jul; 126(7):552-62. PubMed ID: 19348939
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Patterning of Drosophila leg sensory organs through combinatorial signaling by hedgehog, decapentaplegic and wingless.
    Hays R; Buchanan KT; Neff C; Orenic TV
    Development; 1999 Jul; 126(13):2891-9. PubMed ID: 10357933
    [TBL] [Abstract][Full Text] [Related]  

  • 47. tramtrack is a transcriptional repressor required for cell fate determination in the Drosophila eye.
    Xiong WC; Montell C
    Genes Dev; 1993 Jun; 7(6):1085-96. PubMed ID: 8504931
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regulatory mechanisms for specification and patterning of plant vascular tissues.
    Caño-Delgado A; Lee JY; Demura T
    Annu Rev Cell Dev Biol; 2010; 26():605-37. PubMed ID: 20590454
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evolutionary diversification of specification mechanisms within the O/P equivalence group of the leech genus Helobdella.
    Kuo DH; Shankland M
    Development; 2004 Dec; 131(23):5859-69. PubMed ID: 15525668
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stochasticity and cell fate.
    Losick R; Desplan C
    Science; 2008 Apr; 320(5872):65-8. PubMed ID: 18388284
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transcriptional upregulation of the C. elegans Hox gene lin-39 during vulval cell fate specification.
    Wagmaister JA; Gleason JE; Eisenmann DM
    Mech Dev; 2006 Feb; 123(2):135-50. PubMed ID: 16412617
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Prospero and Pax2 combinatorially control neural cell fate decisions by modulating Ras- and Notch-dependent signaling.
    Charlton-Perkins M; Whitaker SL; Fei Y; Xie B; Li-Kroeger D; Gebelein B; Cook T
    Neural Dev; 2011 May; 6():20. PubMed ID: 21539742
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Coordinated repression and activation of two transcriptional programs stabilizes cell fate during myogenesis.
    Ciglar L; Girardot C; Wilczyński B; Braun M; Furlong EE
    Development; 2014 Jul; 141(13):2633-43. PubMed ID: 24961800
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cell fate specification in the mammalian telencephalon.
    Guillemot F
    Prog Neurobiol; 2007 Sep; 83(1):37-52. PubMed ID: 17517461
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The analysis of novel distal Cebpa enhancers and silencers using a transcriptional model reveals the complex regulatory logic of hematopoietic lineage specification.
    Bertolino E; Reinitz J; Manu
    Dev Biol; 2016 May; 413(1):128-44. PubMed ID: 26945717
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Notch1 functions to suppress cone-photoreceptor fate specification in the developing mouse retina.
    Yaron O; Farhy C; Marquardt T; Applebury M; Ashery-Padan R
    Development; 2006 Apr; 133(7):1367-78. PubMed ID: 16510501
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Opposing transcriptional and post-transcriptional roles for Scalloped in binary Hippo-dependent neural fate decisions.
    Xie B; Morton DB; Cook TA
    Dev Biol; 2019 Nov; 455(1):51-59. PubMed ID: 31265830
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neuronal development in the Drosophila compound eye: photoreceptor cells R1, R6, and R7 fail to differentiate in the retina aberrant in pattern (rap) mutant.
    Karpilow JM; Pimentel AC; Shamloula HK; Venkatesh TR
    J Neurobiol; 1996 Oct; 31(2):149-65. PubMed ID: 8885197
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pattern formation in plant development: four vignettes.
    Meyerowitz EM
    Curr Opin Genet Dev; 1994 Aug; 4(4):602-8. PubMed ID: 7950330
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transient expression of thyroid hormone nuclear receptor TRbeta2 sets S opsin patterning during cone photoreceptor genesis.
    Applebury ML; Farhangfar F; Glösmann M; Hashimoto K; Kage K; Robbins JT; Shibusawa N; Wondisford FE; Zhang H
    Dev Dyn; 2007 May; 236(5):1203-12. PubMed ID: 17436273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.