BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34688808)

  • 1. Deep learning model for automatic contouring of cardiovascular substructures on radiotherapy planning CT images: Dosimetric validation and reader study based clinical acceptability testing.
    Garrett Fernandes M; Bussink J; Stam B; Wijsman R; Schinagl DAX; Monshouwer R; Teuwen J
    Radiother Oncol; 2021 Dec; 165():52-59. PubMed ID: 34688808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of a Fully Automated Hybrid Deep Learning Cardiac Substructure Segmentation Tool for Contouring and Dose Evaluation in Lung Cancer Radiotherapy.
    Chin V; Finnegan RN; Chlap P; Otton J; Haidar A; Holloway L; Thwaites DI; Dowling J; Delaney GP; Vinod SK
    Clin Oncol (R Coll Radiol); 2023 Jun; 35(6):370-381. PubMed ID: 36964031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic segmentation of cardiac substructures from noncontrast CT images: accurate enough for dosimetric analysis?
    Luo Y; Xu Y; Liao Z; Gomez D; Wang J; Jiang W; Zhou R; Williamson R; Court LE; Yang J
    Acta Oncol; 2019 Jan; 58(1):81-87. PubMed ID: 30306817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiac atlas development and validation for automatic segmentation of cardiac substructures.
    Zhou R; Liao Z; Pan T; Milgrom SA; Pinnix CC; Shi A; Tang L; Yang J; Liu Y; Gomez D; Nguyen QN; Dabaja BS; Court L; Yang J
    Radiother Oncol; 2017 Jan; 122(1):66-71. PubMed ID: 27939201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-based automatic segmentation of cardiac substructures for lung cancers.
    Chen X; Mumme RP; Corrigan KL; Mukai-Sasaki Y; Koutroumpakis E; Palaskas NL; Nguyen CM; Zhao Y; Huang K; Yu C; Xu T; Daniel A; Balter PA; Zhang X; Niedzielski JS; Shete SS; Deswal A; Court LE; Liao Z; Yang J
    Radiother Oncol; 2024 Feb; 191():110061. PubMed ID: 38122850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiac Substructure Segmentation and Dosimetry Using a Novel Hybrid Magnetic Resonance and Computed Tomography Cardiac Atlas.
    Morris ED; Ghanem AI; Pantelic MV; Walker EM; Han X; Glide-Hurst CK
    Int J Radiat Oncol Biol Phys; 2019 Mar; 103(4):985-993. PubMed ID: 30468849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the clinical acceptability of deep learning contours of prostate and organs-at-risk in an automated prostate treatment planning process.
    Duan J; Bernard M; Downes L; Willows B; Feng X; Mourad WF; St Clair W; Chen Q
    Med Phys; 2022 Apr; 49(4):2570-2581. PubMed ID: 35147216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AAR-RT - A system for auto-contouring organs at risk on CT images for radiation therapy planning: Principles, design, and large-scale evaluation on head-and-neck and thoracic cancer cases.
    Wu X; Udupa JK; Tong Y; Odhner D; Pednekar GV; Simone CB; McLaughlin D; Apinorasethkul C; Apinorasethkul O; Lukens J; Mihailidis D; Shammo G; James P; Tiwari A; Wojtowicz L; Camaratta J; Torigian DA
    Med Image Anal; 2019 May; 54():45-62. PubMed ID: 30831357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of auto-contouring softwares in delineation of organs at risk in lung cancer and rectal cancer.
    Chen W; Wang C; Zhan W; Jia Y; Ruan F; Qiu L; Yang S; Li Y
    Sci Rep; 2021 Nov; 11(1):23002. PubMed ID: 34836989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. U-net architecture with embedded Inception-ResNet-v2 image encoding modules for automatic segmentation of organs-at-risk in head and neck cancer radiation therapy based on computed tomography scans.
    Siciarz P; McCurdy B
    Phys Med Biol; 2022 Jun; 67(11):. PubMed ID: 35134792
    [No Abstract]   [Full Text] [Related]  

  • 11. Feasibility of multi-atlas cardiac segmentation from thoracic planning CT in a probabilistic framework.
    Finnegan R; Dowling J; Koh ES; Tang S; Otton J; Delaney G; Batumalai V; Luo C; Atluri P; Satchithanandha A; Thwaites D; Holloway L
    Phys Med Biol; 2019 Apr; 64(8):085006. PubMed ID: 30856618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer.
    Lustberg T; van Soest J; Gooding M; Peressutti D; Aljabar P; van der Stoep J; van Elmpt W; Dekker A
    Radiother Oncol; 2018 Feb; 126(2):312-317. PubMed ID: 29208513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A deep image-to-image network organ segmentation algorithm for radiation treatment planning: principles and evaluation.
    Marschner S; Datar M; Gaasch A; Xu Z; Grbic S; Chabin G; Geiger B; Rosenman J; Corradini S; Niyazi M; Heimann T; Möhler C; Vega F; Belka C; Thieke C
    Radiat Oncol; 2022 Jul; 17(1):129. PubMed ID: 35869525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic delineation of cardiac substructures using a region-based fully convolutional network.
    Harms J; Lei Y; Tian S; McCall NS; Higgins KA; Bradley JD; Curran WJ; Liu T; Yang X
    Med Phys; 2021 Jun; 48(6):2867-2876. PubMed ID: 33655548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of Monte Carlo algorithm for compliance with RTOG 0915 dosimetric criteria in peripheral lung cancer patients treated with stereotactic body radiotherapy.
    Pokhrel D; Sood S; Badkul R; Jiang H; McClinton C; Lominska C; Kumar P; Wang F
    J Appl Clin Med Phys; 2016 May; 17(3):277-293. PubMed ID: 27167284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical clustering applied to automatic atlas based segmentation of 25 cardiac sub-structures.
    Maffei N; Fiorini L; Aluisio G; D'Angelo E; Ferrazza P; Vanoni V; Lohr F; Meduri B; Guidi G
    Phys Med; 2020 Jan; 69():70-80. PubMed ID: 31835189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of separate multi-atlases for auto segmentation of cardiac substructures in CT-scans acquired in deep inspiration breath hold and free breathing.
    Spoor DS; Sijtsema NM; van den Bogaard VAB; van der Schaaf A; Brouwer CL; Ta BDP; Vliegenthart R; Kierkels RGJ; Langendijk JA; Maduro JH; Peters FBJ; Crijns APG
    Radiother Oncol; 2021 Oct; 163():46-54. PubMed ID: 34343547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic contouring system for cervical cancer using convolutional neural networks.
    Rhee DJ; Jhingran A; Rigaud B; Netherton T; Cardenas CE; Zhang L; Vedam S; Kry S; Brock KK; Shaw W; O'Reilly F; Parkes J; Burger H; Fakie N; Trauernicht C; Simonds H; Court LE
    Med Phys; 2020 Nov; 47(11):5648-5658. PubMed ID: 32964477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical validation of deep learning algorithms for radiotherapy targeting of non-small-cell lung cancer: an observational study.
    Hosny A; Bitterman DS; Guthier CV; Qian JM; Roberts H; Perni S; Saraf A; Peng LC; Pashtan I; Ye Z; Kann BH; Kozono DE; Christiani D; Catalano PJ; Aerts HJWL; Mak RH
    Lancet Digit Health; 2022 Sep; 4(9):e657-e666. PubMed ID: 36028289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring.
    van Dijk LV; Van den Bosch L; Aljabar P; Peressutti D; Both S; J H M Steenbakkers R; Langendijk JA; Gooding MJ; Brouwer CL
    Radiother Oncol; 2020 Jan; 142():115-123. PubMed ID: 31653573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.