BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34689592)

  • 1. Endothelial GTPCH (GTP Cyclohydrolase 1) and Tetrahydrobiopterin Regulate Gestational Blood Pressure, Uteroplacental Remodeling, and Fetal Growth.
    Chuaiphichai S; Yu GZ; Tan CMJ; Whiteman C; Douglas G; Dickinson Y; Drydale EN; Appari M; Zhang W; Crabtree MJ; McNeill E; Hale AB; Lewandowski AJ; Alp NJ; Vatish M; Leeson P; Channon KM
    Hypertension; 2021 Dec; 78(6):1871-1884. PubMed ID: 34689592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GTP cyclohydrolase I phosphorylation and interaction with GTP cyclohydrolase feedback regulatory protein provide novel regulation of endothelial tetrahydrobiopterin and nitric oxide.
    Li L; Rezvan A; Salerno JC; Husain A; Kwon K; Jo H; Harrison DG; Chen W
    Circ Res; 2010 Feb; 106(2):328-36. PubMed ID: 19926872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endothelium-specific GTP cyclohydrolase I overexpression attenuates blood pressure progression in salt-sensitive low-renin hypertension.
    Du YH; Guan YY; Alp NJ; Channon KM; Chen AF
    Circulation; 2008 Feb; 117(8):1045-54. PubMed ID: 18268143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of cerebral microvasculature in transgenic mice with endothelium targeted over-expression of GTP-cyclohydrolase I.
    Santhanam AV; d'Uscio LV; Katusic ZS
    Brain Res; 2015 Nov; 1625():198-205. PubMed ID: 26343845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guanosine triphosphate cyclohydrolase I expression and enzymatic activity are present in caveolae of endothelial cells.
    Peterson TE; d'Uscio LV; Cao S; Wang XL; Katusic ZS
    Hypertension; 2009 Feb; 53(2):189-95. PubMed ID: 19104007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new role for caveolin-1: regulation of guanosine triphosphate cyclohydrolase I and tetrahydrobiopterin in endothelial cells.
    Du YH; Chen AF
    Hypertension; 2009 Feb; 53(2):115-7. PubMed ID: 19104002
    [No Abstract]   [Full Text] [Related]  

  • 7. Quantitative regulation of intracellular endothelial nitric-oxide synthase (eNOS) coupling by both tetrahydrobiopterin-eNOS stoichiometry and biopterin redox status: insights from cells with tet-regulated GTP cyclohydrolase I expression.
    Crabtree MJ; Tatham AL; Al-Wakeel Y; Warrick N; Hale AB; Cai S; Channon KM; Alp NJ
    J Biol Chem; 2009 Jan; 284(2):1136-44. PubMed ID: 19011239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac myocyte-specific overexpression of human GTP cyclohydrolase I protects against acute cardiac allograft rejection.
    Ionova IA; Vásquez-Vivar J; Cooley BC; Khanna AK; Whitsett J; Herrnreiter A; Migrino RQ; Ge ZD; Regner KR; Channon KM; Alp NJ; Pieper GM
    Am J Physiol Heart Circ Physiol; 2010 Jul; 299(1):H88-96. PubMed ID: 20418482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GTP cyclohydrolase I gene transfer augments intracellular tetrahydrobiopterin in human endothelial cells: effects on nitric oxide synthase activity, protein levels and dimerisation.
    Cai S; Alp NJ; McDonald D; Smith I; Kay J; Canevari L; Heales S; Channon KM
    Cardiovasc Res; 2002 Sep; 55(4):838-49. PubMed ID: 12176133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A key role for tetrahydrobiopterin-dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin-deficient mice.
    Chuaiphichai S; Crabtree MJ; Mcneill E; Hale AB; Trelfa L; Channon KM; Douglas G
    Br J Pharmacol; 2017 Apr; 174(8):657-671. PubMed ID: 28128438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-autonomous role of endothelial GTP cyclohydrolase 1 and tetrahydrobiopterin in blood pressure regulation.
    Chuaiphichai S; McNeill E; Douglas G; Crabtree MJ; Bendall JK; Hale AB; Alp NJ; Channon KM
    Hypertension; 2014 Sep; 64(3):530-40. PubMed ID: 24777984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supplement of tetrahydrobiopterin by a gene transfer of GTP cyclohydrolase I cDNA improves vascular dysfunction in insulin-resistant rats.
    Shinozaki K; Nishio Y; Yoshida Y; Koya D; Ayajiki K; Masada M; Kashiwagi A; Okamura T
    J Cardiovasc Pharmacol; 2005 Oct; 46(4):505-12. PubMed ID: 16160605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical role for tetrahydrobiopterin recycling by dihydrofolate reductase in regulation of endothelial nitric-oxide synthase coupling: relative importance of the de novo biopterin synthesis versus salvage pathways.
    Crabtree MJ; Tatham AL; Hale AB; Alp NJ; Channon KM
    J Biol Chem; 2009 Oct; 284(41):28128-28136. PubMed ID: 19666465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased superoxide and endothelial NO synthase uncoupling in blood vessels of Bmal1-knockout mice.
    Anea CB; Cheng B; Sharma S; Kumar S; Caldwell RW; Yao L; Ali MI; Merloiu AM; Stepp DW; Black SM; Fulton DJ; Rudic RD
    Circ Res; 2012 Oct; 111(9):1157-65. PubMed ID: 22912383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen peroxide stimulates tetrahydrobiopterin synthesis through the induction of GTP-cyclohydrolase I and increases nitric oxide synthase activity in vascular endothelial cells.
    Shimizu S; Shiota K; Yamamoto S; Miyasaka Y; Ishii M; Watabe T; Nishida M; Mori Y; Yamamoto T; Kiuchi Y
    Free Radic Biol Med; 2003 May; 34(10):1343-52. PubMed ID: 12726922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelial cell-specific roles for tetrahydrobiopterin in myocardial function, cardiac hypertrophy, and response to myocardial ischemia-reperfusion injury.
    Chuaiphichai S; Chu SM; Carnicer R; Kelly M; Bendall JK; Simon JN; Douglas G; Crabtree MJ; Casadei B; Channon KM
    Am J Physiol Heart Circ Physiol; 2023 Apr; 324(4):H430-H442. PubMed ID: 36735402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maintenance of endothelial guanosine triphosphate cyclohydrolase I ameliorates diabetic nephropathy.
    Kidokoro K; Satoh M; Channon KM; Yada T; Sasaki T; Kashihara N
    J Am Soc Nephrol; 2013 Jun; 24(7):1139-50. PubMed ID: 23620395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationships between nitric oxide-mediated endothelial function, eNOS coupling and blood pressure revealed by eNOS-GTP cyclohydrolase 1 double transgenic mice.
    Adlam D; Bendall JK; De Bono JP; Alp NJ; Khoo J; Nicoli T; Yokoyama M; Kawashima S; Channon KM
    Exp Physiol; 2007 Jan; 92(1):119-26. PubMed ID: 17012144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced activation of NAD(P)H: quinone oxidoreductase 1 attenuates spontaneous hypertension by improvement of endothelial nitric oxide synthase coupling via tumor suppressor kinase liver kinase B1/adenosine 5'-monophosphate-activated protein kinase-mediated guanosine 5'-triphosphate cyclohydrolase 1 preservation.
    Kim YH; Hwang JH; Kim KS; Noh JR; Gang GT; Oh WK; Jeong KH; Kwak TH; Choi HS; Lee IK; Lee CH
    J Hypertens; 2014 Feb; 32(2):306-17. PubMed ID: 24241058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytokine-stimulated GTP cyclohydrolase I expression in endothelial cells requires coordinated activation of nuclear factor-kappaB and Stat1/Stat3.
    Huang A; Zhang YY; Chen K; Hatakeyama K; Keaney JF
    Circ Res; 2005 Feb; 96(2):164-71. PubMed ID: 15604419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.