These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34689941)

  • 1. Extensive study of radiation dose on human body at aviation altitude through Monte Carlo simulation.
    Roy A; Sarkar R; Lee C
    Life Sci Space Res (Amst); 2021 Nov; 31():1-13. PubMed ID: 34689941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of the radiation environment caused by galactic cosmic rays for determining air crew exposure.
    Ferrari A; Pelliccioni M; Rancati T
    Radiat Prot Dosimetry; 2001; 93(2):101-14. PubMed ID: 11548333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of cosmic rays inside an aircraft: spectral perturbation and dose reduction due to aircraft structures and contents.
    Yang ZY; Tsai BS; Huang YS; Sheu RJ
    Radiat Prot Dosimetry; 2023 Jul; 199(11):1174-1183. PubMed ID: 37227153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid assessment of cosmic radiation exposure in aviation based on BP neural network method.
    Wang B; Fang M; Song D; Cheng J; Wu K
    Radiat Prot Dosimetry; 2024 Jun; 200(9):822-835. PubMed ID: 38794881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculations and observations of solar particle enhancements to the radiation environment at aircraft altitudes.
    Dyer CS; Lei F; Clucas SN; Smart DF; Shea MA
    Adv Space Res; 2003; 32(1):81-93. PubMed ID: 14727667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo calculation of the angular distribution of cosmic rays at flight altitudes.
    Battistoni G; Ferrari A; Pelliccioni M; Villari R
    Radiat Prot Dosimetry; 2004; 112(3):331-43. PubMed ID: 15546896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The atmospheric cosmic- and solar energetic particle radiation environment at aircraft altitudes.
    O'Brien K; Friedberg W; Smart DF; Sauer HH
    Adv Space Res; 1998; 21(12):1739-48. PubMed ID: 11542893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the influence of aircraft shielding on the aircrew exposure through an aircraft mathematical model.
    Ferrari A; Pelliccioni M; Villari R
    Radiat Prot Dosimetry; 2004; 108(2):91-105. PubMed ID: 14978289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dosimetry for occupational exposure to cosmic radiation.
    Bartlett DT; McAulay IR; Schrewe UJ; Schnuer K; Menzel HG; Bottollier-Depois JF; Dietze G; Gmur K; Grillmaeir RE; Heinrich W; Lim T; Lindborg L; Reitz G; Schraube H; Spurny F; Tommasino L
    Radiat Prot Dosimetry; 1997; 70(1-4):395-404. PubMed ID: 11540534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atmospheric cosmic rays and solar energetic particles at aircraft altitudes.
    O'Brien K; Friedberg W; Sauer HH; Smart DF
    Environ Int; 1996; 22 Suppl 1():S9-44. PubMed ID: 11542509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DEVELOPMENT, VALIDATION AND DEMONSTRATION OF THE NTHU FLIGHT DOSE CALCULATOR.
    Li AL; Pan WF; Sheu RJ
    Radiat Prot Dosimetry; 2018 Aug; 180(1-4):134-137. PubMed ID: 29036445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of the dosimetric characteristics of cosmic radiation at civil aviation altitudes.
    Ferrari A; Pellicioni M; Rancati T
    Radiat Prot Dosimetry; 2002; 102(4):305-14. PubMed ID: 12474940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo calculation of the radiation field at aircraft altitudes.
    Roesler S; Heinrich W; Schraube H
    Radiat Prot Dosimetry; 2002; 98(4):367-88. PubMed ID: 12120665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mathematical model of aircraft for evaluating the effects of shielding structure on aircrew exposure.
    Ferrari A; Pelliccioni M; Villari R
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):331-5. PubMed ID: 16604655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New operational dose quantity ambient dose
    Matthiä D; Meier MM; Schennetten K
    J Radiol Prot; 2022 Apr; 42(2):. PubMed ID: 35263735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of codes assessing galactic cosmic radiation exposure of aircraft crew.
    Bottollier-Depois JF; Beck P; Bennett B; Bennett L; Bütikofer R; Clairand I; Desorgher L; Dyer C; Felsberger E; Flückiger E; Hands A; Kindl P; Latocha M; Lewis B; Leuthold G; Maczka T; Mares V; McCall MJ; O'Brien K; Rollet S; Rühm W; Wissmann F
    Radiat Prot Dosimetry; 2009 Oct; 136(4):317-23. PubMed ID: 19703832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane.
    Goldhagen P; Reginatto M; Kniss T; Wilson JW; Singleterry RC; Jones IW; Van Steveninck W
    Nucl Instrum Methods Phys Res A; 2002 Jan; 476(1-2):42-51. PubMed ID: 12033224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing exposure to cosmic radiation on board aircraft.
    Bottollier-Depois JF; Chau Q; Bouisset P; Kerlau G; Plawinski L; Lebaron-Jacobs L
    Adv Space Res; 2003; 32(1):59-66. PubMed ID: 14727664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit.
    El-Jaby S; Richardson RB
    Life Sci Space Res (Amst); 2015 Jul; 6():1-9. PubMed ID: 26256622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling of radiation exposure at high altitudes during solar storms.
    Al Anid H; Lewis BJ; Bennett LG; Takada M
    Radiat Prot Dosimetry; 2009 Oct; 136(4):311-6. PubMed ID: 19608577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.