These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 34690420)

  • 1. Recent advances in neural interfaces-Materials chemistry to clinical translation.
    Bettinger CJ; Ecker M; Kozai TDY; Malliaras GG; Meng E; Voit W
    MRS Bull; 2020 Aug; 45(8):655-668. PubMed ID: 34690420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in materials and flexible electronics for peripheral nerve interfaces.
    Bettinger CJ
    Bioelectron Med; 2018; 4():6. PubMed ID: 32232082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress and challenges of implantable neural interfaces based on nature-derived materials.
    Redolfi Riva E; Micera S
    Bioelectron Med; 2021 Apr; 7(1):6. PubMed ID: 33902750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording.
    Patil AC; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):23-44. PubMed ID: 26753777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A translational framework for peripheral nerve stimulating electrodes: Reviewing the journey from concept to clinic.
    Charkhkar H; Christie BP; Pinault GJ; Tyler DJ; Triolo RJ
    J Neurosci Methods; 2019 Dec; 328():108414. PubMed ID: 31472187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent progress of electroactive interface in neural engineering.
    Shan Y; Cui X; Chen X; Li Z
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023 Jan; 15(1):e01827. PubMed ID: 35715994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural Interfaces for Intracortical Recording: Requirements, Fabrication Methods, and Characteristics.
    Szostak KM; Grand L; Constandinou TG
    Front Neurosci; 2017; 11():665. PubMed ID: 29270103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuroengineering tools/applications for bidirectional interfaces, brain-computer interfaces, and neuroprosthetic implants - a review of recent progress.
    Rothschild RM
    Front Neuroeng; 2010; 3():112. PubMed ID: 21060801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Materials Roadmap to Functional Neural Interface Design.
    Wellman SM; Eles JR; Ludwig KA; Seymour JP; Michelson NJ; McFadden WE; Vazquez AL; Kozai TDY
    Adv Funct Mater; 2018 Mar; 28(12):. PubMed ID: 29805350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer-Based Biocompatible Packaging for Implantable Devices: Packaging Method, Materials, and Reliability Simulation.
    Seok S
    Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible and Implantable Microelectrodes for Chronically Stable Neural Interfaces.
    Shi J; Fang Y
    Adv Mater; 2019 Nov; 31(45):e1804895. PubMed ID: 30300442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soft, Implantable Bioelectronic Interfaces for Translational Research.
    Schiavone G; Fallegger F; Kang X; Barra B; Vachicouras N; Roussinova E; Furfaro I; Jiguet S; Seáñez I; Borgognon S; Rowald A; Li Q; Qin C; Bézard E; Bloch J; Courtine G; Capogrosso M; Lacour SP
    Adv Mater; 2020 Apr; 32(17):e1906512. PubMed ID: 32173913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translational opportunities and challenges of invasive electrodes for neural interfaces.
    Shen K; Chen O; Edmunds JL; Piech DK; Maharbiz MM
    Nat Biomed Eng; 2023 Apr; 7(4):424-442. PubMed ID: 37081142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid Crystalline Polymers: Opportunities to Shape Neural Interfaces.
    Rihani R; Tasnim N; Javed M; Usoro JO; D'Souza TM; Ware TH; Pancrazio JJ
    Neuromodulation; 2022 Dec; 25(8):1259-1267. PubMed ID: 33501705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wireless interfaces for brain neurotechnologies.
    Kim HJ; Ho JS
    Philos Trans A Math Phys Eng Sci; 2022 Jul; 380(2228):20210020. PubMed ID: 35658679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensing and Stimulation Applications of Carbon Nanomaterials in Implantable Brain-Computer Interface.
    Li J; Cheng Y; Gu M; Yang Z; Zhan L; Du Z
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale multimodal surface neural interfaces for primates.
    Belloir T; Montalgo-Vargo S; Ahmed Z; Griggs DJ; Fisher S; Brown T; Chamanzar M; Yazdan-Shahmorad A
    iScience; 2023 Jan; 26(1):105866. PubMed ID: 36647381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering and commercialization of human-device interfaces, from bone to brain.
    Knothe Tate ML; Detamore M; Capadona JR; Woolley A; Knothe U
    Biomaterials; 2016 Jul; 95():35-46. PubMed ID: 27108404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subdural CMOS optical probe (SCOPe) for bidirectional neural interfacing.
    Pollmann EH; Yin H; Uguz I; Dubey A; Wingel KE; Choi JS; Moazeni S; Gilhotra Y; Pavlovsky VA; Banees A; Boominathan V; Robinson J; Veeraraghavan A; Pieribone VA; Pesaran B; Shepard KL
    bioRxiv; 2023 Feb; ():. PubMed ID: 36798295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced materials for implantable neuroelectronics.
    Qi Y; Kang SK; Fang H
    MRS Bull; 2023 May; 48(5):475-483. PubMed ID: 37485070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.