These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34690727)

  • 1. Complexity-Based Analysis of the Variations of Brain and Muscle Reactions in Walking and Standing Balance While Receiving Different Perturbations.
    Pakniyat N; Namazi H
    Front Hum Neurosci; 2021; 15():749082. PubMed ID: 34690727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterns of whole-body muscle activations following vertical perturbations during standing and walking.
    Cano Porras D; Jacobs JV; Inzelberg R; Bahat Y; Zeilig G; Plotnik M
    J Neuroeng Rehabil; 2021 May; 18(1):75. PubMed ID: 33957953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding of the coupling between the brain and facial muscle reactions in auditory stimulation.
    Soundirarajan M; Kuca K; Krejcar O; Namazi H
    Technol Health Care; 2022; 30(4):859-868. PubMed ID: 34842201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation in Theta and Beta Electrocortical Activity between Visual and Physical Perturbations to Walking and Standing Balance.
    Peterson SM; Ferris DP
    eNeuro; 2018; 5(4):. PubMed ID: 30105299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complexity-Based Decoding of the Coupling Among Heart Rate Variability (HRV) and Walking Path.
    Mujib Kamal S; Babini MH; Krejcar O; Namazi H
    Front Physiol; 2020; 11():602027. PubMed ID: 33324242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Group-level cortical and muscular connectivity during perturbations to walking and standing balance.
    Peterson SM; Ferris DP
    Neuroimage; 2019 Sep; 198():93-103. PubMed ID: 31112786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoding the coupling between the brain and skin reactions in auditory stimulation by information-based analysis of EEG and GSR signals.
    Pakniyat N; Namazi H
    Technol Health Care; 2022; 30(3):623-632. PubMed ID: 34542048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complexity-based decoding of brain-skin relation in response to olfactory stimuli.
    Omam S; Babini MH; Sim S; Tee R; Nathan V; Namazi H
    Comput Methods Programs Biomed; 2020 Feb; 184():105293. PubMed ID: 31887618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Information-based analysis of the relationship between brain and facial muscle activities in response to static visual stimuli.
    Soundirarajan M; Pakniyat N; Sim S; Nathan V; Namazi H
    Technol Health Care; 2021; 29(1):99-109. PubMed ID: 32568131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient visual perturbations boost short-term balance learning in virtual reality by modulating electrocortical activity.
    Peterson SM; Rios E; Ferris DP
    J Neurophysiol; 2018 Oct; 120(4):1998-2010. PubMed ID: 30044183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modular organization of balance control following perturbations during walking.
    Oliveira AS; Gizzi L; Kersting UG; Farina D
    J Neurophysiol; 2012 Oct; 108(7):1895-906. PubMed ID: 22773783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Trial EEG-EMG coherence analysis reveals muscle fatigue-related progressive alterations in corticomuscular coupling.
    Siemionow V; Sahgal V; Yue GH
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):97-106. PubMed ID: 20371421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of increasing difficulty in standing balance tasks with visual feedback on postural sway and EMG: complexity and performance.
    Barbado Murillo D; Sabido Solana R; Vera-Garcia FJ; Gusi Fuertes N; Moreno FJ
    Hum Mov Sci; 2012 Oct; 31(5):1224-37. PubMed ID: 22658508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of sudden walking perturbations on neuromuscular reflex activity and three-dimensional motion of the trunk in healthy controls and back pain symptomatic subjects.
    Mueller J; Engel T; Mueller S; Stoll J; Baur H; Mayer F
    PLoS One; 2017; 12(3):e0174034. PubMed ID: 28319133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the optimal walking speed for neural relaxation in healthy elderly women using electromyogram and electroencephalogram analyses.
    Shibata M; Shimura M; Shibata S; Wakamura T; Moritani T
    Eur J Appl Physiol Occup Physiol; 1997; 75(3):206-11. PubMed ID: 9088838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complexity-based classification of EEG signal in normal subjects and patients with epilepsy.
    Namazi H; Aghasian E; Ala TS
    Technol Health Care; 2020; 28(1):57-66. PubMed ID: 31104032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Walking reduces sensorimotor network connectivity compared to standing.
    Lau TM; Gwin JT; Ferris DP
    J Neuroeng Rehabil; 2014 Feb; 11():14. PubMed ID: 24524394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling Between Leg Muscle Activation and EEG During Normal Walking, Intentional Stops, and Freezing of Gait in Parkinson's Disease.
    Günther M; Bartsch RP; Miron-Shahar Y; Hassin-Baer S; Inzelberg R; Kurths J; Plotnik M; Kantelhardt JW
    Front Physiol; 2019; 10():870. PubMed ID: 31354521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of measuring event related desynchronization with electroencephalography during walking.
    Severens M; Nienhuis B; Desain P; Duysens J
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2764-7. PubMed ID: 23366498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.