These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34690855)

  • 1. Computer Vision System for Expressing Texture Using Sound-Symbolic Words.
    Yamagata K; Kwon J; Kawashima T; Shimoda W; Sakamoto M
    Front Psychol; 2021; 12():654779. PubMed ID: 34690855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-Modal Associations between Sounds and Drink Tastes/Textures: A Study with Spontaneous Production of Sound-Symbolic Words.
    Sakamoto M; Watanabe J
    Chem Senses; 2016 Mar; 41(3):197-203. PubMed ID: 26715523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bouba/Kiki in Touch: Associations Between Tactile Perceptual Qualities and Japanese Phonemes.
    Sakamoto M; Watanabe J
    Front Psychol; 2018; 9():295. PubMed ID: 29593602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Japanese sound-symbolic words in global contexts: from translation to hybridization.
    Hiraishi N
    F1000Res; 2021; 10():1024. PubMed ID: 35242304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Relationships Between Initial Consonants in Japanese Sound Symbolic Words and Familiarity, Multi-Sensory Imageability, Emotional Valence, and Arousal.
    Kambara T; Umemura T
    J Psycholinguist Res; 2021 Aug; 50(4):831-842. PubMed ID: 33394300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vowel Length Expands Perceptual and Emotional Evaluations in Written Japanese Sound-Symbolic Words.
    Lin Z; Wang N; Yan Y; Kambara T
    Behav Sci (Basel); 2021 Jun; 11(6):. PubMed ID: 34205574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Japanese Sound-Symbolic Words for Representing the Hardness of an Object Are Judged Similarly by Japanese and English Speakers.
    Wong LS; Kwon J; Zheng Z; Styles SJ; Sakamoto M; Kitada R
    Front Psychol; 2022; 13():830306. PubMed ID: 35369145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic Estimation of Multidimensional Ratings from a Single Sound-Symbolic Word and Word-Based Visualization of Tactile Perceptual Space.
    Doizaki R; Watanabe J; Sakamoto M
    IEEE Trans Haptics; 2017; 10(2):173-182. PubMed ID: 28113407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring Tactile Perceptual Dimensions Using Materials Associated with Sensory Vocabulary.
    Sakamoto M; Watanabe J
    Front Psychol; 2017; 8():569. PubMed ID: 28450843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualizing Individual Perceptual Differences Using Intuitive Word-Based Input.
    Sakamoto M; Watanabe J
    Front Psychol; 2019; 10():1108. PubMed ID: 31164851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selectively manipulating softness perception of materials through sound symbolism.
    Nalbantoğlu H; Hazır BM; Dövencioğlu DN
    Front Psychol; 2023; 14():1323873. PubMed ID: 38259577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated pectoral muscle identification on MLO-view mammograms: Comparison of deep neural network to conventional computer vision.
    Ma X; Wei J; Zhou C; Helvie MA; Chan HP; Hadjiiski LM; Lu Y
    Med Phys; 2019 May; 46(5):2103-2114. PubMed ID: 30771257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sound Can Help Us See More Clearly.
    Li Y; Tu T; Zhang H; Li J; Jin Z; Wen Q
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic Estimation of Multidimensional Personality From a Single Sound-Symbolic Word.
    Sakamoto M; Watanabe J; Yamagata K
    Front Psychol; 2021; 12():595986. PubMed ID: 33967880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast vision through frameless event-based sensing and convolutional processing: application to texture recognition.
    Perez-Carrasco JA; Acha B; Serrano C; Camunas-Mesa L; Serrano-Gotarredona T; Linares-Barranco B
    IEEE Trans Neural Netw; 2010 Apr; 21(4):609-20. PubMed ID: 20181543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast-GANFIT: Generative Adversarial Network for High Fidelity 3D Face Reconstruction.
    Gecer B; Ploumpis S; Kotsia I; Zafeiriou S
    IEEE Trans Pattern Anal Mach Intell; 2022 Sep; 44(9):4879-4893. PubMed ID: 34043505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Texture- and deformability-based surface recognition by tactile image analysis.
    Khasnobish A; Pal M; Tibarewala DN; Konar A; Pal K
    Med Biol Eng Comput; 2016 Aug; 54(8):1269-83. PubMed ID: 27008211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfer of Learning from Vision to Touch: A Hybrid Deep Convolutional Neural Network for Visuo-Tactile 3D Object Recognition.
    Rouhafzay G; Cretu AM; Payeur P
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Filter Banks for Texture Recognition, Description, and Segmentation.
    Cimpoi M; Maji S; Kokkinos I; Vedaldi A
    Int J Comput Vis; 2016; 118():65-94. PubMed ID: 27471340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From Signal to Image: Enabling Fine-Grained Gesture Recognition with Commercial Wi-Fi Devices.
    Zhou Q; Xing J; Chen W; Zhang X; Yang Q
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30231472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.