BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

516 related articles for article (PubMed ID: 34691029)

  • 1. The Therapeutic Potential of Tackling Tumor-Induced Dendritic Cell Dysfunction in Colorectal Cancer.
    Subtil B; Cambi A; Tauriello DVF; de Vries IJM
    Front Immunol; 2021; 12():724883. PubMed ID: 34691029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dendritic cell phenotype and function in a 3D co-culture model of patient-derived metastatic colorectal cancer organoids.
    Subtil B; Iyer KK; Poel D; Bakkerus L; Gorris MAJ; Escalona JC; van den Dries K; Cambi A; Verheul HMW; de Vries IJM; Tauriello DVF
    Front Immunol; 2023; 14():1105244. PubMed ID: 36761758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. cDC2 plasticity and acquisition of a DC3-like phenotype mediated by IL-6 and PGE2 in a patient-derived colorectal cancer organoids model.
    Subtil B; van der Hoorn IAE; Cuenca-Escalona J; Becker AMD; Alvarez-Begue M; Iyer KK; Janssen J; van Oorschot T; Poel D; Gorris MAJ; van den Dries K; Cambi A; Tauriello DVF; de Vries IJM
    Eur J Immunol; 2024 Jun; 54(6):e2350891. PubMed ID: 38509863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in Modeling the Immune Microenvironment of Colorectal Cancer.
    Yoon PS; Del Piccolo N; Shirure VS; Peng Y; Kirane A; Canter RJ; Fields RC; George SC; Gholami S
    Front Immunol; 2020; 11():614300. PubMed ID: 33643296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The tumor microenvironment of colorectal cancer metastases: opportunities in cancer immunotherapy.
    Kamal Y; Schmit SL; Frost HR; Amos CI
    Immunotherapy; 2020 Oct; 12(14):1083-1100. PubMed ID: 32787587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic Reprogramming of Colorectal Cancer Cells and the Microenvironment: Implication for Therapy.
    Nenkov M; Ma Y; Gaßler N; Chen Y
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34200820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumour microenvironment of both early- and late-stage colorectal cancer is equally immunosuppressive.
    O'Toole A; Michielsen AJ; Nolan B; Tosetto M; Sheahan K; Mulcahy HE; Winter DC; Hyland JM; O'Connell PR; Fennelly D; O'Donoghue D; O'Sullivan J; Doherty GA; Ryan EJ
    Br J Cancer; 2014 Aug; 111(5):927-32. PubMed ID: 25058349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dendritic cell defects in the colorectal cancer.
    Legitimo A; Consolini R; Failli A; Orsini G; Spisni R
    Hum Vaccin Immunother; 2014; 10(11):3224-35. PubMed ID: 25483675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colorectal Cancer Immune Infiltrates: Significance in Patient Prognosis and Immunotherapeutic Efficacy.
    Guo L; Wang C; Qiu X; Pu X; Chang P
    Front Immunol; 2020; 11():1052. PubMed ID: 32547556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dendritic Cells and CD8 T Cell Immunity in Tumor Microenvironment.
    Fu C; Jiang A
    Front Immunol; 2018; 9():3059. PubMed ID: 30619378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving immunological tumor microenvironment using electro-hyperthermia followed by dendritic cell immunotherapy.
    Tsang YW; Huang CC; Yang KL; Chi MS; Chiang HC; Wang YS; Andocs G; Szasz A; Li WT; Chi KH
    BMC Cancer; 2015 Oct; 15():708. PubMed ID: 26472466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive analysis of the relationship between ubiquitin-specific protease 21 (USP21) and prognosis, tumor microenvironment infiltration, and therapy response in colorectal cancer.
    Nie H; Yu Y; Wang F; Huang X; Wang H; Wang J; Tao M; Ning Y; Zhou J; Zhao Q; Xu F; Fang J
    Cancer Immunol Immunother; 2024 Jun; 73(8):156. PubMed ID: 38834869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Macrophages-Microbiota Interplay in Colorectal Cancer (CRC)-Related Inflammation: Prognostic and Therapeutic Significance.
    Mola S; Pandolfo C; Sica A; Porta C
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32962159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T-cell immunoglobulin and ITIM domain, as a potential immune checkpoint target for immunotherapy of colorectal cancer.
    Fathi M; Pustokhina I; Kuznetsov SV; Khayrullin M; Hojjat-Farsangi M; Karpisheh V; Jalili A; Jadidi-Niaragh F
    IUBMB Life; 2021 May; 73(5):726-738. PubMed ID: 33686787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNAs: Novel immunotherapeutic targets in colorectal carcinoma.
    Li X; Nie J; Mei Q; Han WD
    World J Gastroenterol; 2016 Jun; 22(23):5317-31. PubMed ID: 27340348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CXCL8 Associated Dendritic Cell Activation Marker Expression and Recruitment as Indicators of Favorable Outcomes in Colorectal Cancer.
    Li E; Yang X; Du Y; Wang G; Chan DW; Wu D; Xu P; Ni P; Xu D; Hu Y
    Front Immunol; 2021; 12():667177. PubMed ID: 34025668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor immune microenvironment and nano-immunotherapeutics in colorectal cancer.
    Xiong Y; Wang Y; Tiruthani K
    Nanomedicine; 2019 Oct; 21():102034. PubMed ID: 31207314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TLR4 is essential for dendritic cell activation and anti-tumor T-cell response enhancement by DAMPs released from chemically stressed cancer cells.
    Fang H; Ang B; Xu X; Huang X; Wu Y; Sun Y; Wang W; Li N; Cao X; Wan T
    Cell Mol Immunol; 2014 Mar; 11(2):150-9. PubMed ID: 24362470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dendritic cell/tumor hybrids enhances therapeutic efficacy against colorectal cancer liver metastasis in SCID mice.
    Xu F; Ye YJ; Liu W; Kong M; He Y; Wang S
    Scand J Gastroenterol; 2010 Jun; 45(6):707-13. PubMed ID: 20205622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intestinal multicellular organoids to study colorectal cancer.
    Idris M; Alves MM; Hofstra RMW; Mahe MM; Melotte V
    Biochim Biophys Acta Rev Cancer; 2021 Dec; 1876(2):188586. PubMed ID: 34216725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.