These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 34691081)
21. Tracing Size and Surface Chemistry-Dependent Endosomal Uptake of Gold Nanoparticles Using Surface-Enhanced Raman Scattering. Öztaş DY; Altunbek M; Uzunoglu D; Yılmaz H; Çetin D; Suludere Z; Çulha M Langmuir; 2019 Mar; 35(11):4020-4028. PubMed ID: 30773019 [TBL] [Abstract][Full Text] [Related]
22. Mesoporous silica supported orderly-spaced gold nanoparticles SERS-based sensor for pesticides detection in food. Xu Y; Kutsanedzie FYH; Hassan M; Zhu J; Ahmad W; Li H; Chen Q Food Chem; 2020 Jun; 315():126300. PubMed ID: 32018077 [TBL] [Abstract][Full Text] [Related]
23. Interactions of phenyldithioesters with gold nanoparticles (AuNPs): implications for AuNP functionalization and molecular barcoding of AuNP assemblies. Blakey I; Schiller TL; Merican Z; Fredericks PM Langmuir; 2010 Jan; 26(2):692-701. PubMed ID: 19824687 [TBL] [Abstract][Full Text] [Related]
24. Gold nanoparticles paper as a SERS bio-diagnostic platform. Ngo YH; Then WL; Shen W; Garnier G J Colloid Interface Sci; 2013 Nov; 409():59-65. PubMed ID: 23978290 [TBL] [Abstract][Full Text] [Related]
25. Surface-Enhanced Raman Scattering Active Gold Nanoparticles with Enzyme-Mimicking Activities for Measuring Glucose and Lactate in Living Tissues. Hu Y; Cheng H; Zhao X; Wu J; Muhammad F; Lin S; He J; Zhou L; Zhang C; Deng Y; Wang P; Zhou Z; Nie S; Wei H ACS Nano; 2017 Jun; 11(6):5558-5566. PubMed ID: 28549217 [TBL] [Abstract][Full Text] [Related]
26. Facile synthesis of cellulose nanofiber nanocomposite as a SERS substrate for detection of thiram in juice. Xiong Z; Lin M; Lin H; Huang M Carbohydr Polym; 2018 Jun; 189():79-86. PubMed ID: 29580429 [TBL] [Abstract][Full Text] [Related]
27. A novel biosensor based on competitive SERS immunoassay and magnetic separation for accurate and sensitive detection of chloramphenicol. Yang K; Hu Y; Dong N Biosens Bioelectron; 2016 Jun; 80():373-377. PubMed ID: 26866562 [TBL] [Abstract][Full Text] [Related]
28. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles. Yi Z; Li XY; Liu FJ; Jin PY; Chu X; Yu RQ Biosens Bioelectron; 2013 May; 43():308-14. PubMed ID: 23353007 [TBL] [Abstract][Full Text] [Related]
29. Size-dependent apoptotic activity of gold nanoparticles on osteosarcoma cells correlated with SERS signal. Chakraborty A; Das A; Raha S; Barui A J Photochem Photobiol B; 2020 Jan; 203():111778. PubMed ID: 31931389 [TBL] [Abstract][Full Text] [Related]
30. Cu Nair RV; Thomas T; Kuttoth H; Karthikeyan A; Nair BG; Sandhyarani N Langmuir; 2022 Sep; 38(35):10826-10835. PubMed ID: 35994084 [TBL] [Abstract][Full Text] [Related]
31. DNA assembly and enzymatic cutting in solutions: a gold nanoparticle based SERS detection strategy. Crew E; Yan H; Lin L; Yin J; Skeete Z; Kotlyar T; Tchah N; Lee J; Bellavia M; Goodshaw I; Joseph P; Luo J; Gal S; Zhong CJ Analyst; 2013 Sep; 138(17):4941-9. PubMed ID: 23799231 [TBL] [Abstract][Full Text] [Related]
32. Fabrication of lipophilic gold nanoparticles for studying lipids by surface enhanced Raman spectroscopy (SERS). Driver M; Li Y; Zheng J; Decker E; Julian McClements D; He L Analyst; 2014 Jul; 139(13):3352-5. PubMed ID: 24835140 [TBL] [Abstract][Full Text] [Related]
33. A cytosine-rich DNA decorated gold nanoparticles surface enhanced Raman-scattering platform for sensitive and selective detection of silver ions. Qiao HY; Hong ML; Tian X; Huang LJ; Chu X Anal Sci; 2013; 29(10):991-6. PubMed ID: 24107565 [TBL] [Abstract][Full Text] [Related]
34. Surface-enhanced Raman scattering investigation of bovine serum albumin by Au nanoparticles with different sizes. Xiaodan W; Dawei Z; Ping Z; Taifeng L; Huiqin W; Yongwei Z J Appl Biomater Funct Mater; 2018 Jan; 16(1_suppl):157-162. PubMed ID: 29618248 [TBL] [Abstract][Full Text] [Related]
35. A simple and universal "turn-on" detection platform for proteases based on surface enhanced Raman scattering (SERS). Wu Z; Liu Y; Liu Y; Xiao H; Shen A; Zhou X; Hu J Biosens Bioelectron; 2015 Mar; 65():375-81. PubMed ID: 25461184 [TBL] [Abstract][Full Text] [Related]
36. Green photoreduction synthesis of dispersible gold nanoparticles and their direct in situ assembling in multidimensional substrates for SERS detection. Chen Z; Lu S; Zhang Z; Huang X; Zhao H; Wei J; Li F; Yuan K; Su L; Xiong Y Mikrochim Acta; 2022 Jul; 189(8):275. PubMed ID: 35829782 [TBL] [Abstract][Full Text] [Related]
37. Ultrasensitive SERS aptasensor for the detection of oxytetracycline based on a gold-enhanced nano-assembly. Meng F; Ma X; Duan N; Wu S; Xia Y; Wang Z; Xu B Talanta; 2017 Apr; 165():412-418. PubMed ID: 28153276 [TBL] [Abstract][Full Text] [Related]
38. A facile dual-mode aptasensor based on AuNPs@MIL-101 nanohybrids for ultrasensitive fluorescence and surface-enhanced Raman spectroscopy detection of tetrodotoxin. Liu S; Huo Y; Deng S; Li G; Li S; Huang L; Ren S; Gao Z Biosens Bioelectron; 2022 Apr; 201():113891. PubMed ID: 34999522 [TBL] [Abstract][Full Text] [Related]
39. Highly selective detection of carbon monoxide in living cells by palladacycle carbonylation-based surface enhanced Raman spectroscopy nanosensors. Cao Y; Li DW; Zhao LJ; Liu XY; Cao XM; Long YT Anal Chem; 2015 Oct; 87(19):9696-701. PubMed ID: 26324383 [TBL] [Abstract][Full Text] [Related]
40. Highly sensitive SERS detection of Hg2+ ions in aqueous media using gold nanoparticles/graphene heterojunctions. Ding X; Kong L; Wang J; Fang F; Li D; Liu J ACS Appl Mater Interfaces; 2013 Aug; 5(15):7072-8. PubMed ID: 23855919 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]