BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34691501)

  • 1. Hierarchically porous monoliths based on low-valence transition metal (Cu, Co, Mn) oxides: gelation and phase separation.
    Lu X; Kanamori K; Nakanishi K
    Natl Sci Rev; 2020 Nov; 7(11):1656-1666. PubMed ID: 34691501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of macroporous transition metal hydroxide monoliths via a sol-gel process accompanied by phase separation.
    Liu F; Feng D; Yang H; Guo X
    Sci Rep; 2020 Mar; 10(1):4331. PubMed ID: 32152357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of a hierarchically porous AlPO
    Li W; Zhu Y; Guo X; Nakanishi K; Kanamori K; Yang H
    Sci Technol Adv Mater; 2013 Aug; 14(4):045007. PubMed ID: 27877600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous preparation of hierarchically porous silica monoliths with uniform spherical mesopores confined in a well-defined macroporous framework.
    Guo X; Wang R; Yu H; Zhu Y; Nakanishi K; Kanamori K; Yang H
    Dalton Trans; 2015 Aug; 44(30):13592-601. PubMed ID: 26140683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of macroporous zirconia monoliths from ionic precursors via an epoxide-mediated sol-gel process accompanied by phase separation.
    Guo X; Song J; Lvlin Y; Nakanishi K; Kanamori K; Yang H
    Sci Technol Adv Mater; 2015 Apr; 16(2):025003. PubMed ID: 27877772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Li2FeSiO4-carbon monoliths with controlled macropores: effects of pore properties on electrode performance.
    Hasegawa G; Sannohe M; Ishihara Y; Kanamori K; Nakanishi K; Abe T
    Phys Chem Chem Phys; 2013 Jun; 15(22):8736-43. PubMed ID: 23628943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macroporosity Control by Phase Separation in Sol-Gel Derived Monoliths and Microspheres.
    Marques AC; Vale M
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sol-gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations.
    Nakanishi K; Tanaka N
    Acc Chem Res; 2007 Sep; 40(9):863-73. PubMed ID: 17650924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A design of experiment approach to the sol–gel synthesis of titania monoliths for chromatographic applications.
    Abi Jaoudé M; Randon J; Bordes C; Lanteri P; Bois L
    Anal Bioanal Chem; 2012 May; 403(4):1145-55. PubMed ID: 22286081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sol-gel preparation of titanium (IV)-immobilized hierarchically porous organosilica hybrid monoliths.
    Zhang H; Li X; Yao Y; Ma S; Liu Z; Ou J; Wei Y; Ye M
    Anal Chim Acta; 2019 Jan; 1046():199-207. PubMed ID: 30482300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanocrystalline celluloses-assisted preparation of hierarchical carbon monoliths for hexavalent chromium removal.
    Su H; Chong Y; Wang J; Long D; Qiao W; Ling L
    J Colloid Interface Sci; 2018 Jan; 510():77-85. PubMed ID: 28942067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction and Transition Metal Oxide Loading of Hierarchically Porous Carbon Aerogels.
    Wang J; Ruan X; Qiu J; Liang H; Guo X; Yang H
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32932864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hierarchically porous cellulose monolith: A template-free fabricated, morphology-tunable, and easily functionalizable platform.
    Xin Y; Xiong Q; Bai Q; Miyamoto M; Li C; Shen Y; Uyama H
    Carbohydr Polym; 2017 Feb; 157():429-437. PubMed ID: 27987947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of anisotropic porous silica monoliths by means of magnetically controlled phase separation in sol-gel processes.
    Furlan M; Lattuada M
    Langmuir; 2012 Aug; 28(34):12655-62. PubMed ID: 22849804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition from transparent aerogels to hierarchically porous monoliths in polymethylsilsesquioxane sol-gel system.
    Kanamori K; Kodera Y; Hayase G; Nakanishi K; Hanada T
    J Colloid Interface Sci; 2011 May; 357(2):336-44. PubMed ID: 21377166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile Fabrication of Hierarchically Porous Boronic Acid Group-Functionalized Monoliths With Optical Activity for Recognizing Glucose With Different Conformation.
    Wang Y; Zhang L; Hsu YI; Asoh TA; Uyama H
    Front Chem; 2022; 10():939368. PubMed ID: 35755261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchically Structured Porous Spinels via an Epoxide-Mediated Sol-Gel Process Accompanied by Polymerization-Induced Phase Separation.
    Herwig J; Titus J; Kullmann J; Wilde N; Hahn T; Gläser R; Enke D
    ACS Omega; 2018 Jan; 3(1):1201-1212. PubMed ID: 31457962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interconnected Porous Monolith Prepared via UiO-66 Stabilized Pickering High Internal Phase Emulsion Template.
    Wang J; Zhu H; Li BG; Zhu S
    Chemistry; 2018 Nov; 24(61):16426-16431. PubMed ID: 30125409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological Analysis of Physically Reconstructed Silica Monoliths with Submicrometer Macropores: Effect of Decreasing Domain Size on Structural Homogeneity.
    Stoeckel D; Kübel C; Loeh MO; Smarsly BM; Tallarek U
    Langmuir; 2015 Jul; 31(26):7391-400. PubMed ID: 25654337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled pore formation in organotrialkoxysilane-derived hybrids: from aerogels to hierarchically porous monoliths.
    Kanamori K; Nakanishi K
    Chem Soc Rev; 2011 Feb; 40(2):754-70. PubMed ID: 21085718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.