BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34691681)

  • 1. Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batteries.
    Mu S; Liu Q; Kidkhunthod P; Zhou X; Wang W; Tang Y
    Natl Sci Rev; 2021 Jul; 8(7):nwaa178. PubMed ID: 34691681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Penne-Like MoS
    Zhu H; Zhang F; Li J; Tang Y
    Small; 2018 Mar; 14(13):e1703951. PubMed ID: 29399964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Coupling and Self-Assembly Strategy toward WSe
    Zhang G; Ou X; Yang J; Tang Y
    Small Methods; 2021 Aug; 5(8):e2100374. PubMed ID: 34927868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achieving High Pseudocapacitance Anode by An
    He W; Chen K; Pathak R; Hummel M; Lamsal BS; Gu Z; Kharel P; Wu JJ; Zhou Y
    ACS Appl Mater Interfaces; 2021 May; 13(19):22577-22585. PubMed ID: 33969995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A redox-active metal-organic compound for lithium/sodium-based dual-ion batteries.
    Wang H; Wu Q; Wang Y; Lv X; Wang HG
    J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1024-1030. PubMed ID: 34487925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid Aqueous/Nonaqueous Water-in-Bisalt Electrolyte Enables Safe Dual Ion Batteries.
    Zhu J; Xu Y; Fu Y; Xiao D; Li Y; Liu L; Wang Y; Zhang Q; Li J; Yan X
    Small; 2020 Apr; 16(17):e1905838. PubMed ID: 32227436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium-Based Dual-Ion Battery Based on the Organic Anode and Ionic Liquid Electrolyte.
    Wu H; Hu T; Chang S; Li L; Yuan W
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44254-44265. PubMed ID: 34519196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Potassium-Ion-Based Dual-Ion Battery.
    Ji B; Zhang F; Song X; Tang Y
    Adv Mater; 2017 May; 29(19):. PubMed ID: 28295667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Concentrated Electrolyte towards Enhanced Energy Density and Cycling Life of Dual-Ion Battery.
    Xiang L; Ou X; Wang X; Zhou Z; Li X; Tang Y
    Angew Chem Int Ed Engl; 2020 Oct; 59(41):17924-17930. PubMed ID: 32558980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superior Sodium Storage in 3D Interconnected Nitrogen and Oxygen Dual-Doped Carbon Network.
    Wang M; Yang Z; Li W; Gu L; Yu Y
    Small; 2016 May; 12(19):2559-66. PubMed ID: 27028729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible Interface Design for Stress Regulation of a Silicon Anode toward Highly Stable Dual-Ion Batteries.
    Jiang C; Xiang L; Miao S; Shi L; Xie D; Yan J; Zheng Z; Zhang X; Tang Y
    Adv Mater; 2020 Apr; 32(17):e1908470. PubMed ID: 32108386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defect Sites-Rich Porous Carbon with Pseudocapacitive Behaviors as an Ultrafast and Long-Term Cycling Anode for Sodium-Ion Batteries.
    Wang N; Wang Y; Xu X; Liao T; Du Y; Bai Z; Dou S
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9353-9361. PubMed ID: 29473726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Two-Step Activation Strategy Boosting Hierarchical Porous Carbon Cathode for an Aqueous Zn-Based Hybrid Energy Storage Device with High Capacity and Ultra-Long Cycling Life.
    Zhou Z; Zhou X; Zhang M; Mu S; Liu Q; Tang Y
    Small; 2020 Sep; 16(35):e2003174. PubMed ID: 32761988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast Sodium/Potassium-Ion Intercalation into Hierarchically Porous Thin Carbon Shells.
    Mahmood A; Li S; Ali Z; Tabassum H; Zhu B; Liang Z; Meng W; Aftab W; Guo W; Zhang H; Yousaf M; Gao S; Zou R; Zhao Y
    Adv Mater; 2019 Jan; 31(2):e1805430. PubMed ID: 30422332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MnFe2O4@C Nanofibers as High-Performance Anode for Sodium-Ion Batteries.
    Liu Y; Zhang N; Yu C; Jiao L; Chen J
    Nano Lett; 2016 May; 16(5):3321-8. PubMed ID: 27050390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical Nitrogen-Doped Porous Carbon Microspheres as Anode for High Performance Sodium Ion Batteries.
    Xu K; Pan Q; Zheng F; Zhong G; Wang C; Wu S; Yang C
    Front Chem; 2019; 7():733. PubMed ID: 31737606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Performance Dual-Ion Battery Based on Silicon-Graphene Composite Anode and Expanded Graphite Cathode.
    Liu G; Liu X; Ma X; Tang X; Zhang X; Dong J; Ma Y; Zang X; Cao N; Shao Q
    Molecules; 2023 May; 28(11):. PubMed ID: 37298755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistically enhanced sodium ion storage from encapsulating highly dispersed cobalt nanodots into N, P, S tri-doped hexapod carbon framework.
    Wu S; Xu F; Li Y; Liu C; Zhang Y; Fan H
    J Colloid Interface Sci; 2023 Nov; 649():741-749. PubMed ID: 37385039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon-Confined SnO2-Electrodeposited Porous Carbon Nanofiber Composite as High-Capacity Sodium-Ion Battery Anode Material.
    Dirican M; Lu Y; Ge Y; Yildiz O; Zhang X
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18387-96. PubMed ID: 26252051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new dual-ion battery based on amorphous carbon.
    Wang WA; Huang H; Wang B; Qian C; Li P; Zhou J; Liang Z; Yang C; Guo S
    Sci Bull (Beijing); 2019 Nov; 64(21):1634-1642. PubMed ID: 36659576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.